题目大意:
思路:基尔霍夫矩阵求生成树个数,不会。
可是能够暴力打表。(我才不会说我调试force调试了20分钟。。。
CODE(force.cc):
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 1000
using namespace std; struct Edge{
int x,y; Edge(int _,int __):x(_),y(__) {}
Edge() {}
}edge[MAX]; int edges;
int status; int father[MAX]; int Find(int x)
{
if(father[x] == x) return x;
return father[x] = Find(father[x]);
} inline bool Unite(int x,int y)
{
int fx = Find(x);
int fy = Find(y);
if(fx != fy) {
father[fx] = fy;
return true;
}
return false;
} int main()
{
for(int i = 1; i <= 20; ++i) {
edges = 0;
for(int j = 1; j <= i; ++j)
edge[++edges] = Edge(0,j);
for(int j = 1; j < i; ++j)
edge[++edges] = Edge(j,j + 1);
edge[++edges] = Edge(i,1);
int ans = 0;
for(int j = 1; j <= (1 << edges); ++j) {
int added = 0;
for(int k = 0; k <= i; ++k)
father[k] = k;
for(int k = 0; k < edges; ++k)
added += (j >> k)&1;
if(added != i) continue;
added = 0;
for(int k = 0; k < edges; ++k)
if((j >> k)&1)
added += Unite(edge[k + 1].x,edge[k + 1].y);
ans += (added == i);
}
cout << i << ':' << ans << endl;
}
return 0;
}
打出的表是这种。。
后面的数太大了爆了。
。
非常明显能够看出奇数的数都是全然平方数。
把它们开跟,然后经过艰苦卓绝的分析之后,得到了一个递推式:
f[i] = f[i - 1] + Σf[j] + 2 (j∈[1,i - 1]),答案是f[n] ^ 2
有了这个结论,偶数的就好办了。能够看到,偶数的除以5之后也是全然平方数,和上面非常像,它的递推式是:
f[i] = f[i - 1] + Σf[j] + 1 (j∈[i,i - 1]),答案是f[n] ^ 2 * 5
至于为什么递推式长这样,谜。
CODE:
#include <cstdio>
#include <iomanip>
#include <cstring>
#include <iostream>
#include <algorithm>
#define BASE 10000
#define MAX 1010
using namespace std; struct BigInt{
int num[MAX],len; BigInt(int _ = 0) {
memset(num,0,sizeof(num));
len = _ ? 1:0;
num[1] = _;
}
BigInt operator +(const BigInt &a)const {
BigInt re;
re.len = max(len,a.len);
int temp = 0;
for(int i = 1; i <= re.len; ++i) {
re.num[i] = num[i] + a.num[i] + temp;
temp = re.num[i] / BASE;
re.num[i] %= BASE;
}
if(temp) re.num[++re.len] = temp;
return re;
}
BigInt operator *(const BigInt &a)const {
BigInt re;
for(int i = 1; i <= len; ++i)
for(int j = 1; j <= a.len; ++j) {
re.num[i + j - 1] += num[i] * a.num[j];
re.num[i + j] += re.num[i + j - 1] / BASE;
re.num[i + j - 1] %= BASE;
}
re.len = len + a.len;
if(!re.num[re.len]) --re.len;
return re;
}
}; ostream &operator <<(ostream &os,const BigInt &a)
{
os << a.num[a.len];
for(int i = a.len - 1; i; --i)
os << fixed << setw(4) << setfill('0') << a.num[i];
return os;
} int k;
BigInt f[110],g[110]; int main()
{
cin >> k;
if(k&1) {
k = (k + 1) >> 1;
f[1] = BigInt(1),f[2] = BigInt(4);
g[1] = BigInt(1),g[2] = BigInt(5);
for(int i = 3; i <= k; ++i) {
f[i] = f[i - 1] + g[i - 1] + BigInt(2);
g[i] = g[i - 1] + f[i];
}
cout << f[k] * f[k] << endl;
}
else {
k >>= 1;
f[1] = BigInt(1),f[2] = BigInt(3);
g[1] = BigInt(1),g[2] = BigInt(4);
for(int i = 3; i <= k; ++i) {
f[i] = f[i - 1] + g[i - 1] + BigInt(1);
g[i] = g[i - 1] + f[i];
}
cout << f[k] * f[k] * BigInt(5) << endl;
}
return 0;
}