java操作spark1.2.0

时间:2021-10-10 08:19:47

虽然推荐的是scala,但是还是试一下


 package org.admln.java7OperateSpark;

 import java.util.Arrays;
import java.util.List;
import java.util.regex.Pattern; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; public class OperateSpark {
//单词切分分隔符
private static final Pattern SPACE = Pattern.compile(" "); public static void main(String[] args) {
//初始化
SparkConf sparkConf = new SparkConf().setAppName("JavaWordCount").setMaster("spark://hadoop:7077");
JavaSparkContext ctx = new JavaSparkContext(sparkConf); //第二个参数是文件的最小切分
JavaRDD<String> lines = ctx.textFile("hdfs://hadoop:8020/in/spark/javaOperateSpark/wordcount.txt");
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String,String>() {
public Iterable<String> call(String s) {
return Arrays.asList(SPACE.split(s));
}
}); //划成键值对
JavaPairRDD<String,Integer> ones = words.mapToPair(new PairFunction<String,String,Integer>() {
public Tuple2<String, Integer> call(String t) {
return new Tuple2<String,Integer>(t,1);
}
}); JavaPairRDD<String,Integer> counts = ones.reduceByKey(new Function2<Integer,Integer,Integer>() {
public Integer call(Integer v1, Integer v2) {
return v1 + v2;
}
}); List<Tuple2<String,Integer>> output = counts.collect();
for(Tuple2<?,?> tuple : output) {
System.out.println(tuple._1() + ":" +tuple._2());
}
counts.saveAsTextFile("hdfs://hadoop:8020/out/spark/javaOperateSpark2/");
ctx.stop();
}
}

运行的时候出现了错误

eclipse中为:

Exception in thread "main" java.lang.NoSuchMethodError: com.google.common.hash.HashFunction.hashInt(I)Lcom/google/common/hash/HashCode;
at org.apache.spark.util.collection.OpenHashSet.org$apache$spark$util$collection$OpenHashSet$$hashcode(OpenHashSet.scala:261)
at org.apache.spark.util.collection.OpenHashSet$mcI$sp.getPos$mcI$sp(OpenHashSet.scala:165)
at org.apache.spark.util.collection.OpenHashSet$mcI$sp.contains$mcI$sp(OpenHashSet.scala:102)
at org.apache.spark.util.SizeEstimator$$anonfun$visitArray$2.apply$mcVI$sp(SizeEstimator.scala:214)
at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:141)
at org.apache.spark.util.SizeEstimator$.visitArray(SizeEstimator.scala:210)
at org.apache.spark.util.SizeEstimator$.visitSingleObject(SizeEstimator.scala:169)
at org.apache.spark.util.SizeEstimator$.org$apache$spark$util$SizeEstimator$$estimate(SizeEstimator.scala:161)
at org.apache.spark.util.SizeEstimator$.estimate(SizeEstimator.scala:155)
at org.apache.spark.util.collection.SizeTracker$class.takeSample(SizeTracker.scala:78)
at org.apache.spark.util.collection.SizeTracker$class.afterUpdate(SizeTracker.scala:70)
at org.apache.spark.util.collection.SizeTrackingVector.$plus$eq(SizeTrackingVector.scala:31)
at org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:249)
at org.apache.spark.storage.MemoryStore.putIterator(MemoryStore.scala:136)
at org.apache.spark.storage.MemoryStore.putIterator(MemoryStore.scala:114)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:787)
at org.apache.spark.storage.BlockManager.putIterator(BlockManager.scala:638)
at org.apache.spark.storage.BlockManager.putSingle(BlockManager.scala:992)
at org.apache.spark.broadcast.TorrentBroadcast.writeBlocks(TorrentBroadcast.scala:98)
at org.apache.spark.broadcast.TorrentBroadcast.<init>(TorrentBroadcast.scala:84)
at org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:34)
at org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:29)
at org.apache.spark.broadcast.BroadcastManager.newBroadcast(BroadcastManager.scala:62)
at org.apache.spark.SparkContext.broadcast(SparkContext.scala:945)
at org.apache.spark.SparkContext.hadoopFile(SparkContext.scala:695)
at org.apache.spark.SparkContext.textFile(SparkContext.scala:540)
at org.apache.spark.api.java.JavaSparkContext.textFile(JavaSparkContext.scala:184)
at org.admln.java7OperateSpark.OperateSpark.main(OperateSpark.java:27)

shell中为:

Exception in thread "main" java.lang.VerifyError: class org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$AddBlockRequestProto overrides final method getUnknownFields.()Lcom/google/protobuf/UnknownFieldSet;
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:800)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
at java.net.URLClassLoader.defineClass(URLClassLoader.java:449) ... ... at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

可以看到是protobuf版本和hadoop的冲突了

默认spark1.2.0的protobuf版本为

java操作spark1.2.0

而hadoop2.2.0的为protobuf2.5.0

所以修改spark中pom.xml后重新编译生成部署包(花费一个多小时)

再运行的话shell端成功。但是eclipse端仍然报那个错误

这是因为我用的maven引用的spark包,存在guava版本冲突,默认为

java操作spark1.2.0

单独加一个依赖

  <dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>14.0.1</version>
</dependency>

然后eclipse提交的话不报错了,不过任务一直循环不执行,报告资源不够

WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient memory

然后把核数加到2,内存加到1500M,可是仍然报

INFO SparkDeploySchedulerBackend: Granted executor ID app-20150111003236-0000/3 on hostPort hadoop:34766 with 2 cores, 512.0 MB RAM

java操作spark1.2.0

也就是说核数改了,但是执行内存改不了,不知道为什么,还有就是同样的程序shell端提交就正常执行,eclipse外部提交就报内存不足

改驱动的内存也不行。

我推测有两种可能的原因

1.spark的BUG,SPARK_DRIVER_MEMORY变量默认是512M,但是外部修改不生效;

2.centos的资源和本机windows的资源混乱了,因为我看到了

ERROR SparkDeploySchedulerBackend: Asked to remove non-existent executor 2

的错误,我本机是4核,虚拟机是2核。


不知道为什么网上没有eclipse提交的示例,应该要不就是本身就不支持,会和客户端资源混乱,要不就是还没人摸透。