Let say I have the following data frame in R:
假设我在R中有以下数据框:
df1 <- data.frame(Item_Name = c("test1","test2","test3"), D_1=c(1,0,1),
D_2=c(1,1,1), D_3=c(11,3,1))
I would like to create a function that would delete columns with no variance (e.g. in this case, it would remove column D_2
because it has only 1 value)
我想创建一个删除没有方差的列的函数(例如,在这种情况下,它将删除列D_2,因为它只有1个值)
I know that I could check it by hand, but in reality my data is very large and I would like to automate it. Any idea?
我知道我可以手工检查,但实际上我的数据非常大,我想自动化它。任何的想法?
2 个解决方案
#1
10
Filter
is a useful function here. I will filter only for those where there is more than 1 unique value.
过滤器在这里是一个有用的功能我将仅过滤那些有超过1个唯一值的那些。
i.e.
Filter(function(x)(length(unique(x))>1), df1)
## Item_Name D_1 D_3
## 1 test1 1 11
## 2 test2 0 3
## 3 test3 1 1
#2
8
You can do:
你可以做:
df1[c(TRUE, lapply(df1[-1], var, na.rm = TRUE) != 0)]
# Item_Name D_1 D_3
# 1 test1 1 11
# 2 test2 0 3
# 3 test3 1 1
where the lapply
piece tells you what variables have some variance:
lapply片段告诉你哪些变量有一些变化:
lapply(df1[-1], var, na.rm = TRUE) != 0
# D_1 D_2 D_3
# TRUE FALSE TRUE
#1
10
Filter
is a useful function here. I will filter only for those where there is more than 1 unique value.
过滤器在这里是一个有用的功能我将仅过滤那些有超过1个唯一值的那些。
i.e.
Filter(function(x)(length(unique(x))>1), df1)
## Item_Name D_1 D_3
## 1 test1 1 11
## 2 test2 0 3
## 3 test3 1 1
#2
8
You can do:
你可以做:
df1[c(TRUE, lapply(df1[-1], var, na.rm = TRUE) != 0)]
# Item_Name D_1 D_3
# 1 test1 1 11
# 2 test2 0 3
# 3 test3 1 1
where the lapply
piece tells you what variables have some variance:
lapply片段告诉你哪些变量有一些变化:
lapply(df1[-1], var, na.rm = TRUE) != 0
# D_1 D_2 D_3
# TRUE FALSE TRUE