http://www.lydsy.com/JudgeOnline/problem.php?id=3270
题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$,走的话等概率走到相邻的点,求两人在每个点相遇的概率
对于100%的数据有 n <= 20,n-1 <= m <= n(n-1)/2
因为两个人,所以状态肯定要二元组呀
$f(i,j)$表示一人在$i$另一人在$j$的概率,转移方程:
$f(i,j)=f(i,j)p_ip_j-\sum\limits_{(x,i)\ ,\ (y,j) \in E}{f(x,i)p_jt_x+f(i,y)p_it_y+f(x,y)t_xt_y}$
$t_i=\frac{1-p_i}{d_i}$
然后有环没法$DP$.....
高斯消元解方程...$n^2$个方程$n^2$个变量
注意:
$1.$ $f(i,i)$不能走到其他啦(也不能不走啦)
$2.$ 一开始$f(x,y)$的概率除了走出来的左面还要加上$1$,因为一开始一定在$(x,y)$
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=,M=;
inline int read(){
char c=getchar();int x=;
while(c<''||c>''){c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x;
}
int n,m,x,y,u,v,nn;
int d[N];
double p[N],a[N][N];
inline int id(int i,int j){return (i-)*n+j;}
struct edge{
int v,ne;
}e[M<<];
int h[N],cnt=;
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt].v=u;e[cnt].ne=h[v];h[v]=cnt;
}
double t[N];
void buildEquation(){
for(int i=;i<=n;i++) t[i]=(-p[i])/d[i];
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
int num=id(i,j);double *g=a[num];
if(i==j) g[num]=;
else g[num]=-p[i]*p[j];
int x,y;
for(int k=h[i];k;k=e[k].ne){
x=e[k].v;
if(x!=j) g[id(x,j)]=-p[j]*t[x];
}
for(int k=h[j];k;k=e[k].ne){
y=e[k].v;
if(y!=i) g[id(i,y)]=-p[i]*t[y];
}
for(int k=h[i];k;k=e[k].ne)
for(int l=h[j];l;l=e[l].ne){
x=e[k].v,y=e[l].v;
if(x!=y) g[id(x,y)]=-t[x]*t[y];
}
}
a[id(x,y)][nn+]=;
}
void GaussElimination(int n){
for(int i=;i<=n;i++){
int r=i;
for(int j=i+;j<=n;j++)
if(abs(a[j][i])>abs(a[r][i])) r=j;
if(r!=i) for(int k=;k<=n+;k++) swap(a[i][k],a[r][k]); for(int j=i+;j<=n;j++){
double t=a[j][i]/a[i][i];
for(int k=i;k<=n+;k++) a[j][k]-=a[i][k]*t;
}
}
for(int i=n;i>=;i--){
for(int j=n;j>i;j--) a[i][n+]-=a[j][n+]*a[i][j];
a[i][n+]/=a[i][i];
}
}
int main(){
freopen("in","r",stdin);
n=read();m=read();nn=n*n;
x=read();y=read();
for(int i=;i<=m;i++)
u=read(),v=read(),ins(u,v),d[u]++,d[v]++;
for(int i=;i<=n;i++) scanf("%lf",&p[i]);
buildEquation();
GaussElimination(nn);
for(int i=;i<=n;i++) printf("%.6lf ",a[id(i,i)][nn+]);
}