写在前面
上一篇文章Python实现识别手写数字—图像的处理中我们讲了图片的处理,将图片经过剪裁,拉伸等操作以后将每一个图片变成了1x10000大小的向量。但是如果只是这样的话,我们每一次运行的时候都需要将他们计算一遍,当图片特别多的时候会消耗大量的时间。
所以我们需要将这些向量存入一个文件当中,每次先看看图库中有没有新增的图片,如果有新增的图片,那么就将新增的图片变成1x10000向量再存入文件之中,然后从文件中读取全部图片向量即可。当图库中没有新增图片的时候,那么就直接调用文件中的图片向量进行计算就好。这样子算是节省了大量的时间。
所以本文就是从零开始建立一个这样的图片存储管理系统。
实现逻辑
第一次读入图片
我们的图库中拥有一大堆图片,每一张图片上面都是一个手写的数字,图片的名称为[数字内容]_[序号]。比如说一个图片的名称为2_3,代表这一张图片里面的数字是2,并且是“数字是2的第3张图片”。
存在一个csv文件作为我们的建议的图片数据库,名称为Data.csv。
首先我们读取图库中所有图片的名称,保存在fileNames中。然后读取Data.csv中所有数据。
提取出Data.csv的最后一列(一共10002列,第10001列说明该数字是什么数字,第10002列是图片的名称),也就是数据库中存储的所有图片的名称,存储在item中。
将新加入图库的图片名称保存在newFileNames中。如果Data.csv为空,那么就直接令newFileNames = fileNames。也就是说如果数据库中什么也没有,那么图库中所有图片都是新加入的。
如果Data.csv不为空,那么就将item里面的内容与fileNames的内容比较,如果出现了fileNames里面有的名称item中没有,那么就将这些名称放进newFileNames中。如果item里有的名称fileNames中没有,那就不管。
也就是说,我令我们的数据库只进不出。
现在我们得到了新加入图库的图片的名称newFileNames。
将newFileNames中的名称的图片带入上一文中函数GetTrainPicture进行处理,得到了一个nx10001的矩阵,每一行代表一个新加入的图片,前10000列是图片向量,第10001列是该图片的数字,保存在pic中。
将这些图片压入到数据库的后面。
读取之前数据库原有的图片向量,并与pic合并,得到目前拥有的所有的训练图片向量pic。
以上就是本章写的所有内容,下面放出代码来详细解释一下。
代码解析
主文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
import os
import numpy as np
import OperatePicture as OP
import OperateDataBase as OD
import csv
##Essential vavriable 基础变量
#Standard size 标准大小
N = 100
#Gray threshold 灰度阈值
color = 100 / 255
#读取原CSV文件
reader = list (csv.reader( open ( 'DataBase.csv' , encoding = 'utf-8' )))
#清除读取后的第一个空行
del reader[ 0 ]
#读取num目录下的所有文件名
fileNames = os.listdir(r "./num/" )
#对比fileNames与reader,得到新增的图片newFileNames
newFileNames = OD.NewFiles(fileNames, reader)
print ( 'New pictures are: ' newFileNames)
#得到newFilesNames对应的矩阵
pic = OP.GetTrainPicture(newFileNames)
#将新增图片矩阵存入CSV中
OD.SaveToCSV(pic, newFileNames)
#将原数据库矩阵与新数据库矩阵合并
pic = OD.Combination(reader, pic)
|
我将两节内容分别封装在两个py文件里面,上一篇文章中的图片的切割与处理等所有内容我放在文件OperatePicture里面了,这一节的数据库处理放在了文件OperateDatabase里面。
因为整个代码的逻辑我在上面已经捋过一遍了,所以我不再解释其中的内容,接下来针对每个函数开始讲解。
OperateDatabase代码
从上面的主文件中,我们首先用到了函数NewFiles,主要是对比fileNames和reader这两个文件中图片的名称有什么不同,返回值是新增的图片的名称的列表。下面是代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
def NewFiles(fileNames, reader):
'''判断是否有不同于数据库中的新文件加入'''
#如果数据库中没有数据,则返回filenames
if len (reader) = = 0 :
return fileNames
else :
#从数据库中提取所有名称
files = [item[ 10001 ] for item in reader]
#需要加入的图片名称
newFileNames = []
for item in fileNames:
#判断当前名称是否存在数据库中
#如果不存在,则加入newFileNames
if item not in files:
newFileNames.append(item)
return newFileNames
|
首先判断reader是否有内容,如果没有内容,说明是第一次执行,那么会直接把fileNames返回。否则才会进入下面进行比较。
返回了newFileNames之后,就会把这个列表中的所有名称的图片通过GetTrainPicture函数得到一个1x10001大小的矩阵,具体过程请看我上一篇文章讲的内容。
之后为了把新的数据存入CSV文件中,我们利用函数SaveToCSV将pic存入文件中,具体代码如下。
1
2
3
4
5
6
7
8
9
10
11
12
|
def SaveToCSV(pic, fileNames):
'''将pic与对应的dileNames存入CSV文件'''
writer = csv.writer( open ( 'Database.csv' , 'a' , newline = ' '), dialect = ' excel')
#将fileNames变为列表
f = [item for item in fileNames]
#每一行依次写入文件中
for i in range ( len (pic)):
#将改行图片向量转为list
item = pic[i].tolist()
#将这个图片向量对应的名称f放入列表最后一个
item.append(f[i])
writer.writerow(item)
|
当函数运行过后,会把pic矩阵对应的内容直接给续写入CSV文件中,相当于数据库操纵的写入,并不会覆盖之前原有的数据。
之后我们需要将数据库原有的一大堆数据reader和新加进来的数据pic合并到pic里面,所以利用Combination函数将两个矩阵合并,代码如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
def Combination(reader, pic):
'''将两个矩阵reader与pic合并'''
#两个矩阵的总行数
l = len (reader) + len (pic)
#初始化新的矩阵
newPic = np.zeros(l * 10001 ).reshape(l, 10001 )
#将reader最后的那个字符串名称去掉
for item in reader:
item.pop()
#将reader转化为numpy的矩阵形式
reader = np.array(reader)
#新矩阵前半部分放reader,后半部分放pic
if len (reader) ! = 0 :
newPic[ 0 : len (reader), :] = reader
newPic[ len (reader): len (pic), :] = pic
return newPic
|
因为reader最后一行还包括了一个图片的名称,所以先利用pop将其去掉,之后转化为矩阵形式,然后再直接放入矩阵中。这个矩阵操作可能没有见过,下面我详细解释一下。
假如我现在有一个2x3的矩阵和一个2x2的矩阵
1
2
3
4
|
m = [[ 1 2 3 ]
[ 4 5 6 ]]
n = [[ 7 8 ]
[ 9 1 ]]
|
我可以进行如下操作
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
#操作一
m[:, 0 : 2 ] = n
print (m)
#操作二
m[:, 1 : 3 ] = n
print (m)
#以下为输出结果
#操作一
[[ 7 8 3 ]
[ 9 1 6 ]]
#操作二
[[ 7 7 8 ]
[ 9 9 1 ]]
|
可以看出操作一直接把m的第一二列给替换成n,操作二把m的第二三列替换成了n。具体过程可以百度查一下numpy的矩阵的操作,也可以自己总结规律,不细讲了。
以上就是这一篇的全部代码。
小结
这一篇我相当于用CSV文件制作了一个非常简陋的数据库,能够执行的操作只有识别已有内容NewFiles与添加内容SaveToCSV,并没有插入、删改等操作。主要是我觉得这两个函数目前已经够用,因此只写了这两个操作,所以再需求已经被满足的情况下就不再拓展了。
所有的源代码已经上传到了我的GitHub上,可以前去下载,谢谢阅读。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/hanpu_liang/article/details/78265799