1、直接执行.sql脚本
import numpy as np
import pandas as pd
import lightgbm as lgb
from pandas import DataFrame
from sklearn.model_selection import train_test_split
from io import StringIO
import gc
import sys
import os
hive_cmd = "hive -f ./sql/sql.sql"
output = os.popen(hive_cmd)
data_cart_prop = pd.read_csv(StringIO(unicode(output.read(),'utf-8')), sep="\t",header=0)
2、Hive语句执行
假如有如下hive sql:
hive_cmd = 'hive -e "select count(*) from hbase.routermac_sort_10;"'
一般在python中按照如下方式执行该hive sql:
os.system(hive_cmd)
---------------------
hive_cmd1 = "hive -f ./user.sql"
output1 = os.popen(hive_cmd1)
test_user = pd.read_csv(StringIO(unicode(output1.read(),'utf-8')), sep="\t",header=0) hive_cmd2 = "hive -f ./action.sql"
output2 = os.popen(hive_cmd2)
test_action = pd.read_csv(StringIO(unicode(output2.read(),'utf-8')), sep="\t",header=0) hive_cmd3 = "hive -f ./click.sql"
output3 = os.popen(hive_cmd3)
test_click = pd.read_csv(StringIO(unicode(output3.read(),'utf-8')), sep="\t",header=0)
为了显示表头,在脚本中加上一句:set hive.cli.print.header=true;
或者,使用如下语句:
hive_cmd = 'hive -e "set hive.cli.print.header=true;SELECT * FROM dev.temp_dev_jypt_decor_user_label_phase_one_view_feature WHERE(dt = "2018-09-17");"'
output = os.popen(hive_cmd)
data_cart_prop = pd.read_csv(StringIO(unicode(output.read(),'utf-8')), sep="\t",header=0)
3、tf 显存占用
import tensorflow as tf
tf.enable_eager_execution()
x = tf.get_variable('x', shape=[1], initializer=tf.constant_initializer(3.))
with tf.GradientTape() as tape:
y = tf.square(x)
y_grad = tape.gradient(y, x)
print([y.numpy(), y_grad.numpy()])