聚类算法:K-means 算法(k均值算法)

时间:2021-07-01 04:15:36

k-means算法:

     第一步:选$K$个初始聚类中心,$z_1(1),z_2(1),\cdots,z_k(1)$,其中括号内的序号为寻找聚类中心的迭代运算的次序号.

聚类中心的向量值可任意设定,例如可选开始的$K$个模式样本的向量值作为初始聚类中心。

     第二步:逐个将需分类的模式样本$\{x\}$按最小距离准则分配给$K$个聚类中心中的某一个$z_j(1)$。假设$i=j$时,

\[
D_j (k) = \min \{ \left\| {x - z_i (k)} \right\|,i = 1,2, \cdots K\}
\]

则$x\in S_j(k)$,其中$k$为迭代运算的次序号,第一次迭代$k=1$,$S_j$表示第$j$个聚类,其聚类中心为$z_j$。

第三步:计算各个聚类中心的新的向量值,$z_j(k+1),j=1,2,\cdots,K$,求各聚类域中所包含样本的均值向量:

\[
\begin{array}{*{20}c}
{z_j (k + 1) = \frac{1}{{N_j }}\sum\limits_{x \in S_j (k)} x ,} & {j = 1,2, \cdots ,K} \\
\end{array},
\]

其中$N_j$为第$j$个聚类域$S_j$中所包含的样本个数。以均值向量作为新的聚类中心,可使如下聚类准则函数最小:

\[
\begin{array}{*{20}c}
{J_j = \sum\limits_{x \in S_j (k)} {\left\| {x - z_j (k + 1)} \right\|^2 } ,} & {j = 1,2, \cdots ,K} \\
\end{array}
\]

在这一步中要分别计算$K$个聚类中的样本均值向量,所以称之为$K$-均值算法。

第四步:若$z_j(k+1)\neq z_j(k),j=1,2,\cdots,K$,则返回第二步,将模式样本逐个重新分类,重复迭代运算; 若$z_j(k+1)=z_j(k),j=1,2,\cdots,k$,则算法收敛,计算结束。

K-均值分类算法实例

聚类算法:K-means 算法(k均值算法)

第一步:取$K=2$,并选

$z_1(1)=x_1=(0 0)^T, z_2(1)=x_2=(1 0)^T$

第二步:因$||x_1-z_1(1)||<||x_1-z_2(1)||$,故$x_1\in S_1(1)$

因$||x_2-z_1(1)||>||x_2-z_2(1)||$,故$x_2\in S_2(1)$

因$||x_3-z_1(1)||<||x_3-z_2(1)||$,故$x_3\in S_1(1)$

……

得到:

S1(1)={x1, x3}, S2(1)={x2, x4, x5, …, x20}

第三步:计算新的聚类中心

聚类算法:K-means 算法(k均值算法)

聚类算法:K-means 算法(k均值算法)

第四步:因$z_j(2)\neq z_j(1),j=1,2$,返回第二步;

第二步(返回1):由新的聚类中心,得到:

聚类算法:K-means 算法(k均值算法)

聚类算法:K-means 算法(k均值算法)

因此

$S_1(2)=\{x_1, x_2,\cdots, x_8\}$

$S_2(2)=\{x_9, x_{10}, \cdots, x_{20}\}$

第三步(返回1):计算聚类中心

聚类算法:K-means 算法(k均值算法)

聚类算法:K-means 算法(k均值算法)

第四步(返回1):因$z_j(3)\neq z_j(2),j=1,2$,返回第二步;

第二步(返回2):分类结果与前一次迭代的结果相同,即$S_1(4)=S_1(3),S_2(4)= S_2(3)$;

第三步(返回2):聚类中心与前一次迭代的结果相同;

第四步(返回2):因$z_j(4)=z_j(3),j=1,2$,算法收敛,得到最终的聚类中心。

聚类算法:K-means 算法(k均值算法),聚类算法:K-means 算法(k均值算法)