K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。
聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。
在聚类问题中,给我们的训练样本是,每个,没有了y。
K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下:
1、 随机选取k个聚类质心点(cluster centroids)为。 2、 重复下面过程直到收敛 { 对于每一个样例i,计算其应该属于的类 对于每一个类j,重新计算该类的质心 } |
K是我们事先给定的聚类数,代表样例i与k个类中距离最近的那个类,的值是1到k中的一个。质心代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。
下图展示了对n个样本点进行K-means聚类的效果,这里k取2。
K-means面对的第一个问题是如何保证收敛,前面的算法中强调结束条件就是收敛,可以证明的是K-means完全可以保证收敛性。下面我们定性的描述一下收敛性,我们定义畸变函数(distortion function)如下:
J函数表示每个样本点到其质心的距离平方和。K-means是要将J调整到最小。假设当前J没有达到最小值,那么首先可以固定每个类的质心,调整每个样例的所属的类别来让J函数减少,同样,固定,调整每个类的质心也可以使J减小。这两个过程就是内循环中使J单调递减的过程。当J递减到最小时,和c也同时收敛。(在理论上,可以有多组不同的和c值能够使得J取得最小值,但这种现象实际上很少见)。
由于畸变函数J是非凸函数,意味着我们不能保证取得的最小值是全局最小值,也就是说k-means对质心初始位置的选取比较感冒,但一般情况下k- means达到的局部最优已经满足需求。但如果你怕陷入局部最优,那么可以选取不同的初始值跑多遍k-means,然后取其中最小的J对应的和c输出。
下面累述一下K-means与EM的关系,首先回到初始问题,我们目的是将样本分成k个类,其实说白了就是求每个样例x的隐含类别y,然后利用隐含类别将 x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎么评价假定的好不好呢?我们使用样本的极大 似然估计来度量,这里是就是x和y的联合分布P(x,y)了。如果找到的y能够使P(x,y)最大,那么我们找到的y就是样例x的最佳类别了,x顺手就聚 类了。但是我们第一次指定的y不一定会让P(x,y)最大,而且P(x,y)还依赖于其他未知参数,当然在给定y的情况下,我们可以调整其他参数让 P(x,y)最大。但是调整完参数后,我们发现有更好的y可以指定,那么我们重新指定y,然后再计算P(x,y)最大时的参数,反复迭代直至没有更好的y 可以指定。
这个过程有几个难点,第一怎么假定y?是每个样例硬指派一个y还是不同的y有不同的概率,概率如何度量。第二如何估计P(x,y),P(x,y)还可能依赖很多其他参数,如何调整里面的参数让P(x,y)最大。这些问题在以后的篇章里回答。
这里只是指出EM的思想,E步就是估计隐含类别y的期望值,M步调整其他参数使得在给定类别y的情况下,极大似然估计P(x,y)能够达到极大值。然后在其他参数确定的情况下,重新估计y,周而复始,直至收敛。
上面的阐述有点费解,对应于K-means来说就是我们一开始不知道每个样例对应隐含变量也就是最佳类别。最开始可以随便指定一个给它,然后为了让P(x,y)最大(这里是要让J最小),我们求出在给定c情况下,J最小时的(前面提到的其他未知参数),然而此时发现,可以有更好的(质心与样例距离最小的类别)指定给样例,那么得到重新调整,上述过程就开始重复了,直到没有更好的指定。这样从K-means里我们可以看出它其实就是EM的体现,E步是确定隐含类别变量,M步更新其他参数来 使J最小化。这里的隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。总体思想还是一个迭代优 化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估计其他参数,直至目标函数最优。
本文来源链接:
Kmeans聚类算法的更多相关文章
-
K-Means 聚类算法
K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Clus ...
-
k-means聚类算法python实现
K-means聚类算法 算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他 ...
-
K-Means 聚类算法原理分析与代码实现
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...
-
Kmeans聚类算法原理与实现
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对 ...
-
机器学习六--K-means聚类算法
机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别 ...
-
转载: scikit-learn学习之K-means聚类算法与 Mini Batch K-Means算法
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ================== ...
-
沙湖王 | 用Scipy实现K-means聚类算法
沙湖王 | 用Scipy实现K-means聚类算法 用Scipy实现K-means聚类算法
-
Matlab中K-means聚类算法的使用(K-均值聚类)
K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小. 使用方法:Idx=Kmeans(X,K)[Idx,C]=Kmeans(X,K) [Idx, ...
-
运用三角不等式加速Kmeans聚类算法
运用三角不等式加速Kmeans聚类算法 引言:最近在刷<数据挖掘导论>,第九章, 9.5.1小节有提到,可以用三角不等式,减少不必要的距离计算,从而达到加速聚类算法的目的.这在超大数据量的 ...
-
视觉SLAM之词袋(bag of words) 模型与K-means聚类算法浅析
原文地址:http://www.cnblogs.com/zjiaxing/p/5548265.html 在目前实际的视觉SLAM中,闭环检测多采用DBOW2模型https://github.com/d ...
随机推荐
-
Android开发--去掉标题栏
Android开发中为了尽可能美观,会去掉标题栏.去掉标题栏有三种方法. 一.在Activity代码里实现 在代码中实现以下方法: this.requestWindowFeature(Window.F ...
-
DM9000C网卡驱动程序移植
1.取消版本号不符终止程序运行 2.iobase基地址修改为s3c3440的0x20000000 3.网卡使用的中断号改为IRQ_EINT7 4.中断触发方式改为上升沿触发 5.设置S3C2440的m ...
-
js 触摸事件
js触摸事件 应用在移动端 webkit内核都支持. 触摸事件api https://dvcs.w3.org/hg/webevents/raw-file/tip/touchevents.html 事件 ...
-
s=a+aa+aaa+aaaa+aa...aaaa
main(){ int a,n,count=1; long int sn=0,tn=0; cout<<"input a and n:"; cin>>a> ...
-
MySQL主从复制_复制过滤
关于主从过滤,建议只在从服务器做设定,在Master 端为保证二进制日志的完整, 不建议使用二进制日志过滤. Master 可用参数: binlog-do-db= #定义白名单,仅将制定数据库的相关操 ...
-
eclipse.ini 内存设置
Ubuntu 系统下,Eclipse 配置文件: vi ~/eclipse/eclipse.ini -vmargs -Xms128M -Xmx512M -XX:PermSize=64M -XX:Max ...
-
CenOS6.5下源码安装vim-7.4
1.[下载] vim-7.4下载地址: ftp://ftp.vim.org/pub/vim/unix/vim-7.4.tar.bz2 2.[解压] tar jxvf vim-7.4.tar.bz2 之 ...
-
Python——列表表达式
https://www.cnblogs.com/xuyuanyuan123/p/6718403.html
-
OAuth2.0认证和授权以及单点登录
https://www.cnblogs.com/shizhiyi/p/7754721.html OAuth2.0认证和授权机制讲解 2017-10-30 15:33 by shizhiyi, 2273 ...
-
【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...