[Math] Hidden Markov Model

时间:2022-04-10 04:07:20

看上去不错的网站:http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html

SciPy Cookbookhttp://scipy-cookbook.readthedocs.io/items/KalmanFiltering.html


良心视频:卡尔曼滤波器的原理以及在matlab中的实现

讲解思路貌似是在已知迭代结果的基础上做讲解,不是很透彻。

1. 用矩阵表示

[Math] Hidden Markov Model

2. 本质就是:二维高斯的协方差与sampling效果

[Math] Hidden Markov Model

3. 不确定性在状态之间的传递

[Math] Hidden Markov Model

4. 矩阵表示观察数据

[Math] Hidden Markov Model

5. Kalman系数

[Math] Hidden Markov Model

6. 噪声协方差矩阵的更新

[Math] Hidden Markov Model

7. Matlab实现

[Math] Hidden Markov Model

思考: 

与数学领域 openBUGS 的估参的关系是什么?[Bayes] openBUGS: this is not the annoying bugs in programming

一个是对逐渐增多数据的实时预测;一个是对总体数据的回归拟合。

代码示例:纯python代码

# Kalman filter example demo in Python

# A Python implementation of the example given in pages 11-15 of "An
# Introduction to the Kalman Filter" by Greg Welch and Gary Bishop,
# University of North Carolina at Chapel Hill, Department of Computer
# Science, TR 95-041,
# http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html # by Andrew D. Straw import numpy as np
import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (10, 8) # intial parameters
n_iter = 50
sz = (n_iter,) # size of array
x = -0.37727 # truth value (typo in example at top of p. 13 calls this z)
z = np.random.normal(x,0.1,size=sz) # observations (normal about x, sigma=0.1)
# 已获得一组随机数 Q = 1e-5 # process variance # allocate space for arrays
xhat =np.zeros(sz) # a posteri estimate of x
P =np.zeros(sz) # a posteri error estimate
xhatminus =np.zeros(sz) # a priori estimate of x
Pminus =np.zeros(sz) # a priori error estimate
K =np.zeros(sz) # gain or blending factor R = 0.1**2 # estimate of measurement variance, change to see effect # intial guesses
xhat[0] = 0.0
P[0] = 1.0

# 开始迭代
for k in range(1, n_iter):
# time update
xhatminus[k] = xhat[k-1]
Pminus[k] = P[k-1]+Q # measurement update
K[k] = Pminus[k]/( Pminus[k]+R )
xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k])
P[k] = (1-K[k])*Pminus[k] plt.figure()
plt.plot(z,'k+',label='noisy measurements')
plt.plot(xhat,'b-',label='a posteri estimate')
plt.axhline(x,color='g',label='truth value')
plt.legend()
plt.title('Estimate vs. iteration step', fontweight='bold')
plt.xlabel('Iteration')
plt.ylabel('Voltage') plt.figure()
valid_iter = range(1,n_iter) # Pminus not valid at step 0
plt.plot(valid_iter,Pminus[valid_iter],label='a priori error estimate')
plt.title('Estimated $\it{\mathbf{a \ priori}}$ error vs. iteration step', fontweight='bold')
plt.xlabel('Iteration')
plt.ylabel('$(Voltage)^2$')
plt.setp(plt.gca(),'ylim',[0,.01])
plt.show()

Result: 

[Math] Hidden Markov Model[Math] Hidden Markov Model

Goto: [OpenCV] Samples 14: kalman filter

其实,真正的Kalman Filter用得是如下理论,上述例子只是教小学生的入门读物。

[Math] Hidden Markov Model

Goto: https://www.youtube.com/watch?v=UVNeulkWWUM by XU Yida

关键需要理解: http://www.cnblogs.com/rubbninja/p/6220284.html

[Math] Hidden Markov Model

[Math] Hidden Markov Model

【重点】证明过程的理解关键是:

因为是线性滤波器,本身又具备一个alpha迭代的过程,那么先找出joint distribution,

然后,根据高斯的性质直接得出条件概率,即是Update Rule,这样正好对应于滤波器的alpha迭代过程的形式。

这个条件概率就是关于xt的,也就是最新的状态的概率分布,那么期望也就是miu,就是最新的xt

大概就是这么个思路,笔记在本本上,具体请看视频。符号比较多,但大体就是如上脉络。