【leetcode】 Scramble String (hard)★

时间:2021-02-21 03:30:12

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great
/ \
gr eat
/ \ / \
g r e at
/ \
a t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

    rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t

We say that "rgeat" is a scrambled string of "great".

Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

    rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

判断两个字符串s1和s2是否可以通过旋转实现。

思路:开始傻眼了,反应不过来。第二天恍然大悟,用递归,分左右部分,变成子问题。但是最开始我以为划分树只有一种方式,后来发现树可以随意的划分,左子树可以有任意个字符,右子树也是。所以需要循环遍历所有条件。再然后是可能s1的左半部分在s2中位于左半部分 或者是右半部分,所以对这两种情况也要都考虑到。

  循环的时候用了截枝,如果两边的字符有不一致的直接跳过该次循环。

#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>
#include <stack>
#include <string>
using namespace std; class Solution {
public:
bool isScramble(string s1, string s2) {
if(s1.length() != s2.length())
return false;
if(s1 == s2)
return true; if(!isEqual(s1 , s2))
{
return false;
} for(int i = ; i < s1.length(); i++)
{
int leftlength = i;
int rightlength = s1.length() - leftlength;
string s1left1 = s1.substr(, leftlength);
string s2left1 = s2.substr(, leftlength);
string s1right1 = s1.substr(leftlength, rightlength);
string s2right1 = s2.substr(leftlength, rightlength); string s1left2 = s1.substr(rightlength, leftlength);
string s1right2 = s1.substr(, rightlength); if(!isEqual(s1left1,s2left1) && !isEqual(s1left2,s2left1))
{
continue;
}
if((isScramble(s1left1, s2left1) && isScramble(s1right1, s2right1)) || (isScramble(s1left2, s2left1) && isScramble(s1right2, s2right1)))
{
return true;
}
}
return false;
} //判断两个字符串的字母组成是否一致
bool isEqual(string s1, string s2)
{
if(s1.length() != s2.length())
return false;
for(int i = ; i < s1.length(); i++)
{
int locate = s2.find(s1[i]);
if(locate == string::npos)
{
return false;
}
else
{
s2.erase(s2.begin() + locate);
}
}
return true;
}
}; int main()
{
Solution s;
string s1 = "oatzzffqpnwcxhejzjsnpmkmzngneo";
string s2 = "acegneonzmkmpnsjzjhxwnpqffzzto";
//string s1 = "gneo";
//string s2 = "gneo";
bool ans = s.isScramble(s1, s2); return ;
}

有大神给出了正宗动态规划的解法,非常精简,要好好学习。 不过这个方法算了所有的情况所以时间比我的要长,差不多150ms, 我的是50ms左右。

dp[i][j][l] means whether s2.substr(j,l) is a scrambled string of s1.substr(i,l) or not.

class Solution {
public:
bool isScramble(string s1, string s2) {
int len=s1.size();
bool dp[][][]={false};
for (int i=len-;i>=;i--)
for (int j=len-;j>=;j--) {
dp[i][j][]=(s1[i]==s2[j]);
for (int l=;i+l<=len && j+l<=len;l++) {
for (int n=;n<l;n++) { //所有划分左右区间的情况
dp[i][j][l]|=dp[i][j][n]&&dp[i+n][j+n][l-n]; //s1的左边对s2的左边
dp[i][j][l]|=dp[i][j+l-n][n]&&dp[i+n][j][l-n];//s1的左边对s2的右边
}
}
}
return dp[][][len];
}
};