对用硬件和软件方法实现高可伸缩、高可用网络服务的需求不断增长,这种需求可以归结以下几点:
可伸缩性(Scalability),当服务的负载增长时,系统能被扩展来满足需求,且不降低服务质量。
高可用性(Availability),尽管部分硬件和软件会发生故障,整个系统的服务必须是每天24小时每星期7天可用的。
可管理性(Manageability),整个系统可能在物理上很大,但应该容易管理。
价格有效性(Cost-effectiveness),整个系统实现是经济的、易支付的。
LinuxVirtual Server
针对高可伸缩、高可用网络服务的需求,我们给出了基于IP层和基于内容请求分发的负载平衡调度解决方法,并在Linux内核中实现了这些方法,将一组服务器构成一个实现可伸缩的、高可用网络服务的虚拟服务器。
虚拟服务器的体系结构如图2所示,一组服务器通过高速的局域网或者地理分布的广域网相互连接,在它们的前端有一个负载调度器(LoadBalancer)。负载调度器能无缝地将网络请求调度到真实服务器上,从而使得服务器集群的结构对客户是透明的,客户访问集群系统提供的网络服务就像访问一台高性能、高可用的服务器一样。客户程序不受服务器集群的影响不需作任何修改。系统的伸缩性通过在服务机群中透明地加入和删除一个节点来达到,通过检 测节点或服务进程故障和正确地重置系统达到高可用性。由于我们的负载调度技术是在Linux内核中实现的,我们称之为Linux虚拟服务器(LinuxVirtual Server)。
LinuxVirtual Server项目的目标:使用集群技术和Linux操作系统实现一个高性能、高可用的服务器,它具有很好的可伸缩性(Scalability)、可靠性(Reliability)和可管理性(Manageability)。
3.1IP虚拟服务器软件IPVS
在调度器的实现技术中,IP负载均衡技术是效率最高的。在已有的IP负载均衡技术中有通过网络地址转换(NetworkAddress Translation)将一组服务器构成一个高性能的、高可用的虚拟服务器,我们称之为VS/NAT技术(VirtualServer via Network Address Translation),大多数商品化的IP负载均衡调度器产品都是使用此方法,如Cisco的LocalDirector、F5的Big/IP和 Alteon的ACEDirector。在分析VS/NAT的缺点和网络服务的非对称性的基础上,我们提出通过IP隧道实现虚拟服务器的方法VS/TUN (VirtualServer via IP Tunneling),和通过直接路由实现虚拟服务器的方法VS/DR(VirtualServer via Direct Routing),它们可以极大地提高系统的伸缩性。所以,IPVS软件实现了这三种IP负载均衡技术,它们的大致原理如下(我们将在其他章节对其工作原 理进行详细描述),
Virtual Server viaNetwork Address Translation(VS/NAT)
通过网络地址转换,调度器重写请求报文的目标地址,根据预设的调度算法,将请求分派给后端的真实服务器;真实服务器的响应报文通过调度器时,报文的源地址被重写,再返回给客户,完成整个负载调度过程。
Virtual Server via IPTunneling(VS/TUN)
采用NAT技术时,由于请求和响应报文都必须经过调度器地址重写,当客户请求越来越多时,调度器的处理能力将成为瓶颈。为了解决这个问题,调度器把请求报文通过IP隧道转发至真实服务器,而真实服务器将响应直接返回给客户,所以调度器只处理请求报文。由于一般网络服务应答比请求报文大许多,采用 VS/TUN技术后,集群系统的最大吞吐量可以提高10倍。
Virtual Server viaDirect Routing(VS/DR)
VS/DR通过改写请求报文的MAC地址,将请求发送到真实服务器,而真实服务器将响应直接返回给客户。同VS/TUN技术一样,VS/DR技术可极大地 提高集群系统的伸缩性。这种方法没有IP隧道的开销,对集群中的真实服务器也没有必须支持IP隧道协议的要求,但是要求调度器与真实服务器都有一块网卡连 在同一物理网段上。
针对不同的网络服务需求和服务器配置,IPVS调度器实现了如下八种负载调度算法:
轮叫(RoundRobin)
调度器通过"轮叫"调度算法将外部请求按顺序轮流分配到集群中的真实服务器上,它均等地对待每一台服务器,而不管服务器上实际的连接数和系统负载。
加权轮叫(WeightedRound Robin)
调度器通过"加权轮叫"调度算法根据真实服务器的不同处理能力来调度访问请求。这样可以保证处理能力强的服务器处理更多的访问流量。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。
最少链接(LeastConnections)
调度器通过"最少连接"调度算法动态地将网络请求调度到已建立的链接数最少的服务器上。如果集群系统的真实服务器具有相近的系统性能,采用"最小连接"调度算法可以较好地均衡负载。
加权最少链接(WeightedLeast Connections)
在集群系统中的服务器性能差异较大的情况下,调度器采用"加权最少链接"调度算法优化负载均衡性能,具有较高权值的服务器将承受较大比例的活动连接负载。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。
基于局部性的最少链接(Locality-BasedLeast Connections)
"基于局部性的最少链接" 调度算法是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。该算法根据请求的目标IP地址找出该目标IP地址最近使用的服务器,若该服务器 是可用的且没有超载,将请求发送到该服务器;若服务器不存在,或者该服务器超载且有服务器处于一半的工作负载,则用"最少链接"的原则选出一个可用的服务 器,将请求发送到该服务器。
带复制的基于局部性最少链接(Locality-BasedLeast Connections with Replication)
"带复制的基于局部性最少链接"调度算法也是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。它与LBLC算法的不同之处是它要维护从一个 目标IP地址到一组服务器的映射,而LBLC算法维护从一个目标IP地址到一台服务器的映射。该算法根据请求的目标IP地址找出该目标IP地址对应的服务 器组,按"最小连接"原则从服务器组中选出一台服务器,若服务器没有超载,将请求发送到该服务器,若服务器超载;则按"最小连接"原则从这个集群中选出一 台服务器,将该服务器加入到服务器组中,将请求发送到该服务器。同时,当该服务器组有一段时间没有被修改,将最忙的服务器从服务器组中删除,以降低复制的程度。
目标地址散列(DestinationHashing)
"目标地址散列"调度算法根据请求的目标IP地址,作为散列键(HashKey)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。
源地址散列(SourceHashing)
"源地址散列"调度算法根据请求的源IP地址,作为散列键(HashKey)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。
4. LVS集群的特点
LVS集群的特点可以归结如下:
功能
有实现三种IP负载均衡技术和八种连接调度算法的IPVS软件。在IPVS内部实现上,采用了高效的Hash函数和垃圾回收机制,能正确处理所调度报文相关的ICMP消息(有些商品化的系统反而不能)。虚拟服务的设置数目没有限制,每个虚拟服务有自己的服务器集。它支持持久的虚拟服务(如HTTPCookie和HTTPS等需要该功能的支持),并提供详尽的统计数据,如连接的处理速率和报文的流量等。针对大规模拒绝服务(Denyof Service)攻击,实现了三种防卫策略。
有基于内容请求分发的应用层交换软件KTCPVS,它也是在Linux内核中实现。有相关的集群管理软件对资源进行监测,能及时将故障屏蔽,实现系统的高可用性。主、从调度器能周期性地进行状态同步,从而实现更高的可用性。
适用性
后端服务器可运行任何支持TCP/IP的操作系统,包括Linux,各种Unix(如FreeBSD、SunSolaris、HPUnix等),Mac/OS和WindowsNT/2000等。
负载调度器能够支持绝大多数的TCP和UDP协议:
协议 |
内 容 |
TCP |
HTTP,FTP,PROXY,SMTP,POP3,IMAP4,DNS,LDAP,HTTPS,SSMTP等 |
UDP |
DNS,NTP,ICP,视频、音频流播放协议等 |
无需对客户机和服务器作任何修改,可适用大多数Internet服务。
性能
LVS服务器集群系统具有良好的伸缩性,可支持几百万个并发连接。配置100M网卡,采用VS/TUN或VS/DR调度技术,集群系统的吞吐量可高达1Gbits/s;如配置千兆网卡,则系统的最大吞吐量可接近10Gbits/s。
可靠性
LVS服务器集群软件已经在很多大型的、关键性的站点得到很好的应用,所以它的可靠性在真实应用得到很好的证实。有很多调度器运行一年多,未作一次重启动。
软件许可证
LVS集群软件是按GPL(GNUPublic License)许可证发行的*软件,这意味着你可以得到软件的源代码,有权对其进行修改,但必须保证你的修改也是以GPL方式发行。
LVS集群的体系结构
LVS集群的通用体系结构
LVS集群采用IP负载均衡技术和基于内容请求分发技术。调度器具有很好的吞吐率,将请求均衡地转移到不同的服务器上执行,且调度器自动屏蔽掉服务器的故障,从而将一组服务器构成一个高性能的、高可用的虚拟服务器。整个服务器集群的结构对客户是透明的,而且无需修改客户端和服务器端的程序。
为此,在设计时需要考虑系统的透明性、可伸缩性、高可用性和易管理性。一般来说,LVS集群采用三层结构,其体系结构如图1所示,三层主要组成部分为:
负载调度器(loadbalancer),它是整个集群对外面的前端机,负责将客户的请求发送到一组服务器上执行,而客户认为服务是来自一个IP地址(我们可称之为虚拟IP地址)上的。
服务器池(serverpool),是一组真正执行客户请求的服务器,执行的服务有WEB、MAIL、FTP和DNS等。
共享存储(sharedstorage),它为服务器池提供一个共享的存储区,这样很容易使得服务器池拥有相同的内容,提供相同的服务。
调度器是服务器集群系统的唯一入口点(SingleEntry Point),它可以采用IP负载均衡技术、基于内容请求分发技术或者两者相结合。在IP负载均衡技术中,需要服务器池拥有相同的内容提供相同的服务。当客户请求到达时,调度器只根据服务器负载情况和设定的调度算法从服务器池中选出一个服务器,将该请求转发到选出的服务器,并记录这个调度;当这个请求的其他报文到达,也会被转发到前面选出的服务器。在基于内容请求分发技术中,服务器可以提供不同的服务,当客户请求到达时,调度器可根据请求的内容选择服务器 执行请求。因为所有的操作都是在Linux操作系统核心空间中将完成的,它的调度开销很小,所以它具有很高的吞吐率。
服务器池的结点数目是可变的。当整个系统收到的负载超过目前所有结点的处理能力时,可以在服务器池中增加服务器来满足不断增长的请求负载。对大多数网络服务来说,请求间不存在很强的相关性,请求可以在不同的结点上并行执行,所以整个系统的性能基本上可以随着服务器池的结点数目增加而线性增长。
共享存储通常是数据库、网络文件系统或者分布式文件系统。服务器结点需要动态更新的数据一般存储在数据库系统中,同时数据库会保证并发访问时数据的一致性。静态的数据可以存储在网络文件系统(如NFS/CIFS)中,但网络文件系统的伸缩能力有限,一般来说,NFS/CIFS服务器只能 支持3~6个繁忙的服务器结点。对于规模较大的集群系统,可以考虑用分布式文件系统,如AFS[1]、GFS[2.3]、Coda[4]和 Intermezzo[5]等。分布式文件系统可为各服务器提供共享的存储区,它们访问分布式文件系统就像访问本地文件系统一样,同时分布式文件系统可提供良好的伸缩性和可用性。此外,当不同服务器上的应用程序同时读写访问分布式文件系统上同一资源时,应用程序的访问冲突需要消解才能使得资源处于一致状态。这需要一个分布式锁管理器(DistributedLock Manager),它可能是分布式文件系统内部提供的,也可能是外部的。开发者在写应用程序时,可以使用分布式锁管理器来保证应用程序在不同结点上并发访问的一致性。
负载调度器、服务器池和共享存储系统通过高速网络相连接,如100Mbps交换网络、Myrinet和Gigabit网络等。使用高速的网络,主要为避免当系统规模扩大时互联网络成为整个系统的瓶颈。
Graphic Monitor是为系统管理员提供整个集群系统的监视器,它可以监视系统的状态。GraphicMonitor是基于浏览器的,所以无论管理员在本地还是异地都可以监测系统的状况。为了安全的原因,浏览器要通过HTTPS(SecureHTTP)协议和身份认证后,才能进行系统监测,并进行系统的配置和管理。
安装: 根据内核版本(uname -r)安装ipvsadm-1.26.tar.gzhttp://www.linuxvirtualserver.org/software/ipvs.html#kernel-2.6
cd ipvsadm-1.26
make
make install
安装完后验证:
执行ipvsadm命令,出现IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
说明安装成功。
配置: Director server:
#!/bin/sh
# description: Start LVS of Director server
VIP=192.168.8.241
RIP1=192.168.8.136
RIP2=192.168.8.138
./etc/rc.d/init.d/functions
case "$1" in
start)
echo " start LVS of Director Server"
# set the Virtual IP Address and sysctl parameter
/sbin/ifconfig eth0:0 $VIP broadcast $VIP netmask 255.255.255.255 up
echo "1" >/proc/sys/net/ipv4/ip_forward
#Clear IPVS table
/sbin/ipvsadm -C
#set LVS
/sbin/ipvsadm -A -t $VIP:49415 -s rr -p 600
/sbin/ipvsadm -a -t $VIP:49415 -r $RIP1:49415 -g
/sbin/ipvsadm -a -t $VIP:49415 -r $RIP2:49415 -g
#Run LVS
/sbin/ipvsadm
;;
stop)
echo "close LVS Directorserver"
echo "0" >/proc/sys/net/ipv4/ip_forward
/sbin/ipvsadm -C
/sbin/ifconfig eth0:0 down
;;
*)
echo "Usage: $0 {start|stop}"
exit 1
esac
Real server:
#!/bin/bash
#description : Start Real Server
VIP=192.168.8.241
./etc/rc.d/init.d/functions
case "$1" in
start)
echo " Start LVS of Real Server"
/sbin/ifconfig lo:0 $VIP broadcast $VIP netmask 255.255.255.255 up
echo "1" >/proc/sys/net/ipv4/conf/lo/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/lo/arp_announce
echo "1" >/proc/sys/net/ipv4/conf/all/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/all/arp_announce
;;
stop)
/sbin/ifconfig lo:0 down
echo "close LVS Director server"
echo "0" >/proc/sys/net/ipv4/conf/lo/arp_ignore
echo "0" >/proc/sys/net/ipv4/conf/lo/arp_announce
echo "0" >/proc/sys/net/ipv4/conf/all/arp_ignore
echo "0" >/proc/sys/net/ipv4/conf/all/arp_announce
;;
*)
echo "Usage: $0 {start|stop}"
exit 1
esac