Using Anaconda Python 2.7 Windows 10.
使用Anaconda Python 2.7 Windows 10。
I am training a language model using the Keras exmaple:
我正在使用Keras exmaple训练语言模型:
print('Build model...')
model = Sequential()
model.add(GRU(512, return_sequences=True, input_shape=(maxlen, len(chars))))
model.add(Dropout(0.2))
model.add(GRU(512, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(len(chars)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
def sample(a, temperature=1.0):
# helper function to sample an index from a probability array
a = np.log(a) / temperature
a = np.exp(a) / np.sum(np.exp(a))
return np.argmax(np.random.multinomial(1, a, 1))
# train the model, output generated text after each iteration
for iteration in range(1, 3):
print()
print('-' * 50)
print('Iteration', iteration)
model.fit(X, y, batch_size=128, nb_epoch=1)
start_index = random.randint(0, len(text) - maxlen - 1)
for diversity in [0.2, 0.5, 1.0, 1.2]:
print()
print('----- diversity:', diversity)
generated = ''
sentence = text[start_index: start_index + maxlen]
generated += sentence
print('----- Generating with seed: "' + sentence + '"')
sys.stdout.write(generated)
for i in range(400):
x = np.zeros((1, maxlen, len(chars)))
for t, char in enumerate(sentence):
x[0, t, char_indices[char]] = 1.
preds = model.predict(x, verbose=0)[0]
next_index = sample(preds, diversity)
next_char = indices_char[next_index]
generated += next_char
sentence = sentence[1:] + next_char
sys.stdout.write(next_char)
sys.stdout.flush()
print()
According to Keras documentation, the model.fit
method returns a History callback, which has a history attribute containing the lists of successive losses and other metrics.
根据Keras文档,model.fit方法返回历史回调,其历史属性包含连续损失和其他指标的列表。
hist = model.fit(X, y, validation_split=0.2)
print(hist.history)
After training my model, if I run print(model.history)
I get the error:
训练我的模型后,如果我运行print(model.history),我会收到错误:
AttributeError: 'Sequential' object has no attribute 'history'
How do I return my model history after training my model with the above code?
使用上述代码训练模型后,如何返回模型历史记录?
UPDATE
The issue was that:
问题在于:
The following had to first be defined:
必须首先定义以下内容:
from keras.callbacks import History
history = History()
The callbacks option had to be called
必须调用回调选项
model.fit(X_train, Y_train, nb_epoch=5, batch_size=16, callbacks=[history])
But now if I print
但现在如果我打印
print(history.History)
it returns
{}
even though I ran an iteration.
即使我运行迭代。
7 个解决方案
#1
15
It's been solved.
它已经解决了。
The losses only save to the History over the epochs. I was running iterations instead of using the Keras built in epochs option.
损失只能在历史上保存到历史。我正在运行迭代而不是使用内置时代选项中的Keras。
so instead of doing 4 iterations I now have
所以我现在没有进行4次迭代
model.fit(......, nb_epoch = 4)
Now it returns the loss for each epoch run:
现在它返回每个纪元运行的损失:
print(hist.history)
{'loss': [1.4358016599558268, 1.399221191623641, 1.381293383180471, h1.3758836857303727]}
#2
6
Just an example started from
只是一个例子开始
history = model.fit(X, Y, validation_split=0.33, nb_epoch=150, batch_size=10, verbose=0)
You can use
您可以使用
print(history.history.keys())
to list all data in history.
列出历史记录中的所有数据。
Then, you can print the history of validation loss like this:
然后,您可以打印验证丢失的历史记录,如下所示:
print(history.history['val_loss'])
#3
4
The dictionary with histories of "acc", "loss", etc. is available and saved in hist.history
variable.
具有“acc”,“loss”等历史的字典可用并保存在hist.history变量中。
#4
2
Another option is CSVLogger: https://keras.io/callbacks/#csvlogger. It creates a csv file appending the result of each epoch. Even if you interrupt training, you get to see how it evolved.
另一个选项是CSVLogger:https://keras.io/callbacks/#csvlogger。它会创建一个附加每个纪元结果的csv文件。即使你中断训练,你也会看到它是如何进化的。
#5
2
The following simple code works great for me:
以下简单代码对我很有用:
seqModel =model.fit(x_train, y_train,
batch_size = batch_size,
epochs = num_epochs,
validation_data = (x_test, y_test),
shuffle = True,
verbose=0, callbacks=[TQDMNotebookCallback()]) #for visualization
Make sure you assign the fit function to an output variable. Then you can access that variable very easily
确保将拟合函数分配给输出变量。然后,您可以非常轻松地访问该变量
# visualizing losses and accuracy
train_loss = seqModel.history['loss']
val_loss = seqModel.history['val_loss']
train_acc = seqModel.history['acc']
val_acc = seqModel.history['val_acc']
xc = range(num_epochs)
plt.figure()
plt.plot(xc, train_loss)
plt.plot(xc, val_loss)
Hope this helps. source: https://keras.io/getting-started/faq/#how-can-i-record-the-training-validation-loss-accuracy-at-each-epoch
希望这可以帮助。来源:https://keras.io/getting-started/faq/#how-can-i-record-the-training-validation-loss-accuracy-at-each-epoch
#6
1
I have also found that you can use verbose=2
to make keras print out the Losses:
我还发现你可以使用verbose = 2来使keras打印出损失:
history = model.fit(X, Y, validation_split=0.33, nb_epoch=150, batch_size=10, verbose=2)
And that would print nice lines like this:
这会打印出这样漂亮的线条:
Epoch 1/1
- 5s - loss: 0.6046 - acc: 0.9999 - val_loss: 0.4403 - val_acc: 0.9999
According to their documentation:
根据他们的文件:
verbose: 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch.
#7
0
Actually, you can also do it with the iteration method. Because sometimes we might need to use the iteration method instead of the built-in epochs method to visualize the training results after each iteration.
实际上,您也可以使用迭代方法。因为有时我们可能需要使用迭代方法而不是内置的epochs方法来在每次迭代后可视化训练结果。
history = [] #Creating a empty list for holding the loss later
for iteration in range(1, 3):
print()
print('-' * 50)
print('Iteration', iteration)
result = model.fit(X, y, batch_size=128, nb_epoch=1) #Obtaining the loss after each training
history.append(result.history['loss']) #Now append the loss after the training to the list.
start_index = random.randint(0, len(text) - maxlen - 1)
print(history)
This way allows you to get the loss you want while maintaining your iteration method.
这种方式可以让您在维护迭代方法的同时获得所需的损失。
#1
15
It's been solved.
它已经解决了。
The losses only save to the History over the epochs. I was running iterations instead of using the Keras built in epochs option.
损失只能在历史上保存到历史。我正在运行迭代而不是使用内置时代选项中的Keras。
so instead of doing 4 iterations I now have
所以我现在没有进行4次迭代
model.fit(......, nb_epoch = 4)
Now it returns the loss for each epoch run:
现在它返回每个纪元运行的损失:
print(hist.history)
{'loss': [1.4358016599558268, 1.399221191623641, 1.381293383180471, h1.3758836857303727]}
#2
6
Just an example started from
只是一个例子开始
history = model.fit(X, Y, validation_split=0.33, nb_epoch=150, batch_size=10, verbose=0)
You can use
您可以使用
print(history.history.keys())
to list all data in history.
列出历史记录中的所有数据。
Then, you can print the history of validation loss like this:
然后,您可以打印验证丢失的历史记录,如下所示:
print(history.history['val_loss'])
#3
4
The dictionary with histories of "acc", "loss", etc. is available and saved in hist.history
variable.
具有“acc”,“loss”等历史的字典可用并保存在hist.history变量中。
#4
2
Another option is CSVLogger: https://keras.io/callbacks/#csvlogger. It creates a csv file appending the result of each epoch. Even if you interrupt training, you get to see how it evolved.
另一个选项是CSVLogger:https://keras.io/callbacks/#csvlogger。它会创建一个附加每个纪元结果的csv文件。即使你中断训练,你也会看到它是如何进化的。
#5
2
The following simple code works great for me:
以下简单代码对我很有用:
seqModel =model.fit(x_train, y_train,
batch_size = batch_size,
epochs = num_epochs,
validation_data = (x_test, y_test),
shuffle = True,
verbose=0, callbacks=[TQDMNotebookCallback()]) #for visualization
Make sure you assign the fit function to an output variable. Then you can access that variable very easily
确保将拟合函数分配给输出变量。然后,您可以非常轻松地访问该变量
# visualizing losses and accuracy
train_loss = seqModel.history['loss']
val_loss = seqModel.history['val_loss']
train_acc = seqModel.history['acc']
val_acc = seqModel.history['val_acc']
xc = range(num_epochs)
plt.figure()
plt.plot(xc, train_loss)
plt.plot(xc, val_loss)
Hope this helps. source: https://keras.io/getting-started/faq/#how-can-i-record-the-training-validation-loss-accuracy-at-each-epoch
希望这可以帮助。来源:https://keras.io/getting-started/faq/#how-can-i-record-the-training-validation-loss-accuracy-at-each-epoch
#6
1
I have also found that you can use verbose=2
to make keras print out the Losses:
我还发现你可以使用verbose = 2来使keras打印出损失:
history = model.fit(X, Y, validation_split=0.33, nb_epoch=150, batch_size=10, verbose=2)
And that would print nice lines like this:
这会打印出这样漂亮的线条:
Epoch 1/1
- 5s - loss: 0.6046 - acc: 0.9999 - val_loss: 0.4403 - val_acc: 0.9999
According to their documentation:
根据他们的文件:
verbose: 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch.
#7
0
Actually, you can also do it with the iteration method. Because sometimes we might need to use the iteration method instead of the built-in epochs method to visualize the training results after each iteration.
实际上,您也可以使用迭代方法。因为有时我们可能需要使用迭代方法而不是内置的epochs方法来在每次迭代后可视化训练结果。
history = [] #Creating a empty list for holding the loss later
for iteration in range(1, 3):
print()
print('-' * 50)
print('Iteration', iteration)
result = model.fit(X, y, batch_size=128, nb_epoch=1) #Obtaining the loss after each training
history.append(result.history['loss']) #Now append the loss after the training to the list.
start_index = random.randint(0, len(text) - maxlen - 1)
print(history)
This way allows you to get the loss you want while maintaining your iteration method.
这种方式可以让您在维护迭代方法的同时获得所需的损失。