【bzoj2190】【仪仗队】欧拉函数+线性筛(浅尝ACM-J)

时间:2022-04-12 11:48:52

【bzoj2190】【仪仗队】欧拉函数+线性筛(浅尝ACM-J)

向大(hei)佬(e)*学(di)习(tou)

Description

  作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图)。      现在,C君希望你告诉他队伍整齐时能看到的学生人数。

【bzoj2190】【仪仗队】欧拉函数+线性筛(浅尝ACM-J)

Input

  共一个数N。

Output

  共一个数,即C君应看到的学生人数。

Sample Input

  4

Sample Output

  9

HINT

【数据规模和约定】   对于 100% 的数据,1 ≤ N ≤ 40000

一眼看去没有思路啊!O_O

先根据数据范围来看,o(n*n)必爆无疑,最多就是o(n*√n),当然,o(n)也是可以的。

这道题由组内的另外两位同(da)学(lao)用他们华尔街的狼之嗅觉立即发现了本质所在。蒟蒻的我就再理一遍思路(数论渣渣的我T_T)

如果我们把c君的位置设为(0,0),建立直角坐标系的话,我们很容易发现:同在一个斜率上的点只能有一个被看到。那又能怎样呢?

再想想,P(x,y)和P0(x*k,y*k)即在同一直线上。那么,当x、y互质时,P点就能被看到。

互质……好熟悉的东西啊……是什么呢……?

标题已经暴露了,就是欧拉函数!求一个和就是了!!

于是蒟蒻去复(xin)习(xue)了一遍欧拉筛,把这道题调过了

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N=40000+5; int n;
int phi[N],prime[N],sz=1,mark[N],sum=0; void oula(){
memset(prime,0,sizeof(prime));
memset(mark,0,sizeof(mark));
for(int i=2;i<=n-1;i++){
if(!mark[i]){
prime[sz++]=i;
phi[i]=i-1;
sum+=phi[i];
}//背错啦 >_<
for(int j=1;j<sz&&i*prime[j]<=n-1;j++){
mark[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
sum+=phi[i*prime[j]];
break;
}else{
phi[i*prime[j]]=phi[i]*(prime[j]-1);
sum+=phi[i*prime[j]];
}
} }
}
int main(){
scanf("%d",&n);
oula();
if(n!=1) printf("%d",sum*2+3);
else printf("0");
return 0;
}

总结:

数论的知识看起来高大上不实用,然而数学无处不在。这道题算是拓宽眼界长知识了,世界真的好大