容易想到将问题转化为求图的独立数问题 ,但求一般图的独立集是一个NPC问题,需要一些转化。
状态压缩,枚举每个上古农场是否选择,然后将剩下的新农场根据i + j奇偶性分为x , y集。
结果为 max(tot + nx + ny - 二分图匹配数)
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<utility>
using namespace std;
typedef long long LL;
const int N = 150, INF = 0x3F3F3F3F; int mp[15][15]; int dir[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; int cx[N], cy[N];//匹配结果
int nx, ny;//x,y集合元素个数
bool inx[N], iny[N]; bool used[N];
bool nop[15][15]; //存x到y集合的有向图
struct Node{
int to,next;
}edge[1000];
int head[N],tot; bool dfs(int u){
for(int i = head[u]; ~i; i = edge[i].next){
int v = edge[i].to;
if(!used[v]){
used[v] = true;
if(cy[v] == -1 || dfs(cy[v])){
cx[u] = v;
cy[v] = u;
return true;
}
}
}
return false;
} int Hungary(){
int ans = 0;
memset(cx, -1, sizeof(cx));
memset(cy, -1, sizeof(cy));
for(int i = 0; i < nx; i++){
if(cx[i] == -1){
memset(used, 0, sizeof(used));
if(dfs(i)){
ans++;
}
}
}
return ans;
} void init(){
memset(head, -1, sizeof(head));
tot = 0;
}
void add(int u, int to){
edge[tot].to=to;
edge[tot].next=head[u];
head[u]=tot++;
} bool check(int n, int m, int st){
memset(nop, 0, sizeof(nop));
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
if(st & (1 << mp[i][j])){
for(int k = 0; k < 4; k++){
int u = i + dir[k][0];
int v = j + dir[k][1];
if((mp[u][v] != -1) && (mp[i][j] != mp[u][v]) && (st & (1 << mp[u][v]))){
return false;
}
nop[u][v] = 1;
}
}
}
}
return true; }
char str[N];
int main(){
int t, n, m;
cin>>t;
int vis[N];
for(int cas = 1; cas <= t; cas++){
scanf("%d %d", &n, &m);
int ans = 0;
memset(mp, -1, sizeof(mp));
memset(vis, 0, sizeof(vis));
for(int i = 1; i <= n; i++){
scanf("%s", str + 1);
for(int j = 1; j <= m; j++){
if(str[j] == '.'){
mp[i][j] = 10;
}else{
mp[i][j] = str[j] - '0';
vis[str[j] - '0'] = 1;
}
}
}
int cnt = 0;
for(int i = 0; i < 10; i++){
if(vis[i]){
vis[i] = cnt++;
}
} for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
if(mp[i][j] < 10){
mp[i][j] = vis[mp[i][j]];
}
}
} for(int st = 0; st < (1 << cnt); st++){
int tot = 0;
int tp = st;
while(tp){
tot += tp & 1;
tp >>= 1;
} if(!check(n, m, st)){
continue;
}
init();
nx = 0;
ny = 0;
memset(inx, 0, sizeof(inx));
memset(iny, 0, sizeof(iny));
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
if(mp[i][j] < 10){
nop[i][j] = 1;
} if((i + j) % 2){
if(mp[i][j] == 10 && !nop[i][j]){
iny[(i - 1) *m + j - 1] = 1;
}
} if((i + j) % 2 == 0){
if(mp[i][j] == 10 && !nop[i][j]){
inx[(i - 1) *m + j - 1] = 1;
for(int k = 0; k < 4; k++){
int u = i + dir[k][0];
int v = j + dir[k][1];
if(mp[u][v] == 10 && !nop[u][v]){
add((i - 1) *m + j - 1, (u - 1) *m + v - 1);
} } } } }
}
for(int i = 0; i < n * m; i++){
if(inx[i]){
tot++;
nx = i + 1;
}
if(iny[i]){
tot++;
ny = i + 1;
}
}
ans = max(ans, tot - Hungary());
} printf("Case #%d: %d\n", cas, ans);
} return 0;
}