IP分片 与 TCP分段的区别 !!!!careful========以及udp中一个包大小究竟为多大合适 ==========三次握手四次挥手细节

时间:2024-03-20 20:04:49

首先声明:TCP分片应该称为TCP分段

TCP/IP详解--TCP的分段和IP的分片

分组可以发生在运输层和网络层,运输层中的TCP会分段,网络层中的IP会分片。IP层的分片更多的是为运输层的UDP服务的,由于TCP自己会避免IP的分片,所以使用TCP传输在IP层都不会发生分片的现象。

我们在学习TCP/IP协议时都知道,TCP报文段如果很长的话,会在发送时发生分段,在接受时进行重组,  同样IP数据报在长度超过一定值时也会发生分片,在接收端再将分片重组。

我们先来看两个与TCP报文段分段和IP数据报分片密切相关的概念。

  MTU(最大传输单元)

MTU前面已经说过了,是链路层中的网络对数据帧的一个限制,依然以以太网为例,MTU为1500个字节。一个IP数据报在以太网中传输,如果它的长度大于该MTU值,就要进行分片传输,使得每片数据报的长度小于MTU。分片传输的IP数据报不一定按序到达,但IP首部中的信息能让这些数据报片按序组装 (标识  标志  偏移等信息进行重组合 卷2 有讲) 。   IP数据报的分片与重组是在网络层进完成的。

  MSS(最大分段大小)

MSS是TCP里的一个概念(首部的选项字段中)。MSS是TCP数据包每次能够传输的最大数据分段,TCP报文段的长度大于MSS时,要进行分段传输。TCP协议在建立连接的时候通常要协商双方的MSS值,每一方都有用于通告它期望接收的MSS选项(MSS选项只出现在SYN报文段中,即TCP三次握手的前两次)。MSS的值一般为MTU值减去两个首部大小(需要减去IP数据包包头的大小20Bytes和TCP数据段的包头20Bytes)所以如果用链路层以太网,MSS的值往往为1460。  而Internet上标准的MTU(最小的MTU,链路层网络为x2.5时)为576,那么如果不设置,则MSS的默认值就为536个字节很多时候,MSS的值最好取512的倍数。TCP报文段的分段与重组是在运输层完成的。

到了这里有一个问题自然就明了了,TCP分段的原因是MSS,IP分片的原因是MTU,由于一直有MSS<=MTU,很明显,分段后的每一段TCP报文段再加上IP首部后的长度不可能超过MTU,因此也就不需要在网络层进行IP分片了。因此TCP报文段很少会发生IP分片的情况。

再来看UDP数据报,由于UDP数据报不会自己进行分段,因此当长度超过了MTU时,会在网络层进行IP分片。同样,ICMP(在网络层中)同样会出现IP分片情况。

在TCP/IP分层中,数据链路层用MTU(Maximum Transmission Unit,最大传输单元)来限制所能传输的数据包大小,MTU是指一次传送的数据最大长度,不包括数据链路层数据帧的帧头,如以太网的MTU为1500字节,实际上数据帧的最大长度为1518    = 6+6+2+4+1500 字节,其中以太网数据帧的帧头为6+6+2字节。

当发送的IP数据报的大小超过了MTU时,IP层就需要对数据进行分片,否则数据将无法发送成功。

分片传输的IP数据报不一定按序到达,但IP首部中的信息能让这些数据报片按序组装。IP数据报的分片与重组是在网络层进完成的。

区别:    

1;==========     TCP分段产生原因是MSS.(最大分段大小

2.IP分片由网络层完成,也在网络层进行重组;      TCP分段是在传输层完成,并在传输层进行重组.   //透明性

3. 到了这里有一个问题自然就明了了,TCP分段的原因是MSS,IP分片的原因是MTU,由于一直有MSS<=MTU,很明显,分段后的每一段TCP报文段再加上IP首部后的长度不可能超过MTU,因此也就不需要在网络层进行IP分片了。因此TCP报文段很少会发生IP分片的情况。 若数据过大,只会在传输层进行数据分段,到了IP层就不用分片。

而我们常提到的 IP分片是由于UDP传输协议造成的,因为UDP传输协议并未限定传输数据报的大小。

——————————————————————————————————————————————————————

 总结:UDP不会分段,就由IP来分片。   TCP会分段,当然就不用IP来分片了!

                                                  区分TCP分段和IP分片,了解它们工作在不同的层

为什么要避免UDP数据报在IP层分片呢?!!!! why  如下:

在网络编程中,我们要避免出现IP分片,那么为什么要避免呢?

原因是IP层是没有超时重传机制的,如果IP层对一个数据包进行了分片,只要有一个分片丢失了,只能依赖于传输层进行重传,结果是所有的分片都要重传一遍,这个代价有点大。

由此可见,IP分片会大大降低传输层传送数据的成功率,所以我们要避免IP分片。

对于UDP包,我们需要在应用层去限制每个包的大小,一般不要超过1472字节,即以太网MTU(1500—UDP首部(8)—IP首部(20)。

对于TCP数据,应用层就不需要考虑这个问题了,因为传输层已经帮我们做了。在建立连接的三次握手的过程中,连接双方会相互通告MSS(Maximum Segment Size,最大报文段长度),MSS一般是MTU—IP首部(20)—TCP首部(20),每次发送的TCP数据都不会超过双方MSS的最小值,所以就保证了IP数据报不会超过MTU,避免了IP分片。

udp中一个包大小究竟为多大合适

在进行UDP编程的时候,我们最容易想到的问题就是,一次发送多少bytes好?  
当然,这个没有唯一答案,相对于不同的系统,不同的要求,其得到的答案是不一样的,我这里仅对像ICQ一类的发送聊天消息的情况作分析,对于其他情况,你或许也能得到一点帮助。

结论1:字节以下

以太网(Ethernet)数据帧的长度必须在46-1500字节之间,这是由以太网的物理特性决定的,这个1500字节被称为链路层的MTU(最大传输单元)。

但这并不是指链路层的长度被限制在1500字节,其实这个MTU指的是链路层的数据区,并不包括链路层的首部和尾部的18个字节。
所以,事实上这个1500字节就是网络层IP数据报的长度限制。因为IP数据报的首部为20字节,所以IP数据报的数据区长度最大为1480字节。而这个1480字节就是用来放TCP传来的TCP报文段或UDP传来的UDP数据报的。

又因为UDP数据报的首部8字节,所以UDP数据报的数据区最大长度为1472字节。这个1472字节就是我们可以使用的字节数。

当我们发送的UDP数据大于1472的时候会怎样呢? 这也就是说IP数据报大于1500字节,大于MTU,这个时候发送方IP层就需要分片(fragmentation)。把数据报分成若干片,使每一片都小于MTU,而接收方IP层则需要进行数据报的重组。这样就会多做许多事情,而更严重的是,由于UDP的特性,当某一片数据传送中丢失时,接收方无法重组数据报,将导致丢弃整个UDP数据报。

因此,在普通的局域网环境下,我建议将UDP的数据控制在1472字节以下为好。

结论2:字节以下


进行Internet编程时则不同,因为Internet上的路由器可能会将MTU设为不同的值。如果我们假定MTU为1500来发送数据,而途经的某个网络的MTU值小于1500字节,那么系统将会使用一系列的机制来调整MTU值,使数据报能够顺利到达目的地,这样就会做许多不必要的操作。
鉴于Internet上的标准MTU值为576字节,所以我建议在进行Internet的UDP编程时, 最好将UDP的数据长度控件在548字节(576-8-20)以内。   

1、三次握手

(1)三次握手的详述

首先Client端发送连接请求报文,Server段接受连接后回复ACK报文,并为这次连接分配资源。Client端接收到ACK报文后也向Server段发生ACK报文,并分配资源,这样TCP连接就建立了。

IP分片 与 TCP分段的区别 !!!!careful========以及udp中一个包大小究竟为多大合适 ==========三次握手四次挥手细节

最初两端的TCP进程都处于CLOSED关闭状态,A主动打开连接,而B被动打开连接。(A、B关闭状态CLOSED——B收听状态LISTEN——A同步已发送状态SYN-SENT——B同步收到状态SYN-RCVD——A、B连接已建立状态ESTABLISHED

  • B的TCP服务器进程先创建传输控制块TCB,准备接受客户进程的连接请求。然后服务器进程就处于LISTEN(收听)状态,等待客户的连接请求。若有,则作出响应。
  • 1)第一次握手:A的TCP客户进程也是首先创建传输控制块TCB,然后向B发出连接请求报文段,(首部的同步位SYN=1初始序号seq=x),(SYN=1的报文段不能携带数据)但要消耗掉一个序号,此时TCP客户进程进入SYN-SENT(同步已发送)状态。
  • 2)第二次握手:B收到连接请求报文段后,如同意建立连接,则向A发送确认,在确认报文段中(SYN=1,ACK=1,确认号ack=x+1,初始序号seq=y),测试TCP服务器进程进入SYN-RCVD(同步收到)状态;
  • 3)第三次握手:TCP客户进程收到B的确认后,要向B给出确认报文段(ACK=1,确认号ack=y+1,序号seq=x+1)(初始为seq=x,第二个报文段所以要+1),ACK报文段可以携带数据,不携带数据则不消耗序号。TCP连接已经建立,A进入ESTABLISHED(已建立连接)。
  • 当B收到A的确认后,也进入ESTABLISHED状态。

(2)总结三次握手过程:

  • 第一次握手:起初两端都处于CLOSED关闭状态,Client将标志位SYN置为1,随机产生一个值seq=x,并将该数据包发送给Server,Client进入SYN-SENT状态,等待Server确认;
  • 第二次握手:Server收到数据包后由标志位SYN=1得知Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=x+1,随机产生一个值seq=y,并将该数据包发送给Client以确认连接请求,Server进入SYN-RCVD状态,此时操作系统为该TCP连接分配TCP缓存和变量;
  • 第三次握手:Client收到确认后,检查ack是否为x+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=y+1,并且此时操作系统为该TCP连接分配TCP缓存和变量,并将该数据包发送给Server,Server检查ack是否为y+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client和Server就可以开始传输数据。

起初A和B都处于CLOSED状态——B创建TCB,处于LISTEN状态,等待A请求——A创建TCB,发送连接请求(SYN=1,seq=x),进入SYN-SENT状态——B收到连接请求,向A发送确认(SYN=ACK=1,确认号ack=x+1,初始序号seq=y),进入SYN-RCVD状态——A收到B的确认后,给B发出确认(ACK=1,ack=y+1,seq=x+1),A进入ESTABLISHED状态——B收到A的确认后,进入ESTABLISHED状态。

TCB传输控制块Transmission Control Block,存储每一个连接中的重要信息,如TCP连接表,到发送和接收缓存的指针,到重传队列的指针,当前的发送和接收序号。

(3)为什么A还要发送一次确认呢?可以二次握手吗?

  答:主要为了防止已失效的连接请求报文段突然又传送到了B,因而产生错误

如A发出连接请求,但因连接请求报文丢失而未收到确认,于是A再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接,A发出了两个连接请求报文段,其中第一个丢失,第二个到达了B,但是第一个丢失的报文段只是在某些网络结点长时间滞留了,延误到连接释放以后的某个时间才到达B, 此时B误认为A又发出一次新的连接请求,于是就向A发出确认报文段,同意建立连接,不采用三次握手,只要B发出确认,就建立新的连接了,此时A不理睬B的确认且不发送数据,则B一致等待A发送数据,浪费资源。

  下面才是标准答案!!!!  上面谢希任的书  讲解有误

  为了实现可靠数据传输, TCP 协议的通信双方, 都必须维护一个序列号, 以标识发送出去的数据包中, 哪些是已经被对方收到的。 三次握手的过程即是通信双方相互告知序列号起始值, 并确认对方已经收到了序列号起始值的必经步骤
如果只是两次握手, 至多只有连接发起方的起始序列号能被确认, 另一方选择的序列号则得不到确认

(4)Server端易受到SYN攻击?

服务器端的资源分配是在二次握手时分配的,而客户端的资源是在完成三次握手时分配的,所以服务器容易受到SYN洪泛攻击,SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server则回复确认包,并等待Client确认,由于源地址不存在,因此Server需要不断重发直至超时,这些伪造的SYN包将长时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络拥塞甚至系统瘫痪。

防范SYN攻击措施:降低主机的等待时间使主机尽快的释放半连接的占用,短时间受到某IP的重复SYN则丢弃后续请求。

2、四次挥手

(1)四次挥手的详述

  假设Client端发起中断连接请求,也就是发送FIN报文。Server端接到FIN报文后,意思是说"我Client端没有数据要发给你了",但是如果你还有数据没有发送完成,则不必急着关闭Socket,可以继续发送数据。所以你先发送ACK,"告诉Client端,你的请求我收到了,但是我还没准备好,请继续你等我的消息"。这个时候Client端就进入FIN_WAIT状态,继续等待Server端的FIN报文。当Server端确定数据已发送完成,则向Client端发送FIN报文,"告诉Client端,好了,我这边数据发完了,准备好关闭连接了"。Client端收到FIN报文后,"就知道可以关闭连接了,但是他还是不相信网络,怕Server端不知道要关闭,所以发送ACK后进入TIME_WAIT状态,如果Server端没有收到ACK则可以重传。“,Server端收到ACK后,"就知道可以断开连接了"。Client端等待了2MSL后依然没有收到回复,则证明Server端已正常关闭,那好,我Client端也可以关闭连接了。Ok,TCP连接就这样关闭了!

IP分片 与 TCP分段的区别 !!!!careful========以及udp中一个包大小究竟为多大合适 ==========三次握手四次挥手细节

数据传输结束后,通信的双方都可释放连接,A和B都处于ESTABLISHED状态。(A、B连接建立状态ESTABLISHED——A终止等待1状态FIN-WAIT-1——B关闭等待状态CLOSE-WAIT——A终止等待2状态FIN-WAIT-2——B最后确认状态LAST-ACK——A时间等待状态TIME-WAIT——B、A关闭状态CLOSED

  • 1)A的应用进程先向其TCP发出连接释放报文段(FIN=1,序号seq=u),并停止再发送数据,主动关闭TCP连接,进入FIN-WAIT-1(终止等待1)状态,等待B的确认。
  • 2)B收到连接释放报文段后即发出确认报文段,(ACK=1,确认号ack=u+1,序号seq=v),B进入CLOSE-WAIT(关闭等待)状态,此时的TCP处于半关闭状态,A到B的连接释放。
  • 3)A收到B的确认后,进入FIN-WAIT-2(终止等待2)状态,等待B发出的连接释放报文段。
  • 4)B没有要向A发出的数据,B发出连接释放报文段(FIN=1,ACK=1,序号seq=w,确认号ack=u+1),B进入LAST-ACK(最后确认)状态,等待A的确认。
  • 5)A收到B的连接释放报文段后,对此发出确认报文段(ACK=1,seq=u+1,ack=w+1),A进入TIME-WAIT(时间等待)状态。此时TCP未释放掉,需要经过时间等待计时器设置的时间2MSL后,A才进入CLOSED状态。

(2)总结四次挥手过程:

起初A和B处于ESTABLISHED状态——A发出连接释放报文段并处于FIN-WAIT-1状态——B发出确认报文段且进入CLOSE-WAIT状态——A收到确认后,进入FIN-WAIT-2状态,等待B的连接释放报文段——B没有要向A发出的数据,B发出连接释放报文段且进入LAST-ACK状态——A发出确认报文段且进入TIME-WAIT状态——B收到确认报文段后进入CLOSED状态——A经过等待计时器时间2MSL后,进入CLOSED状态

(3)为什么A在TIME-WAIT状态必须等待2MSL的时间?

MSL最长报文段寿命Maximum Segment Lifetime,MSL=2

答:  两个理由:1)保证A发送的最后一个ACK报文段能够到达B2)防止“已失效的连接请求报文段”出现在本连接中。

  • 1)这个ACK报文段有可能丢失,使得处于LAST-ACK状态的B收不到对已发送的FIN+ACK报文段的确认,B超时重传FIN+ACK报文段,而A能在2MSL时间内收到这个重传的FIN+ACK报文段,接着A重传一次确认,重新启动2MSL计时器,最后A和B都进入到CLOSED状态,若A在TIME-WAIT状态不等待一段时间,而是发送完ACK报文段后立即释放连接,则无法收到B重传的FIN+ACK报文段,所以不会再发送一次确认报文段,则B无法正常进入到CLOSED状态。
  • 2)A在发送完最后一个ACK报文段后,再经过2MSL,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失,使下一个新的连接中不会出现这种旧的连接请求报文段。

(4)为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

(5)为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。

TCP的最大报文段长度

  上面介绍了TCP连接的建立和释放过程,下面介绍一下TCP的最大报文段长度。
  最大报文段长度(MSS)表示TCP传往另一端的最大块数据的长度。当一个连接建立时,连接的双方都要通告各自的MSS。一般来说,MSS越大越好,因为报文段越大允许每个报文段传送的数据就越多,相对IP和TCP首部有更高的网络利用率。
  MSS选项只能出现在SYN报文段中,所以只能在SYN=1的帧中才会有MSS选项说明报文的最大段长度。
---------------------

关于TCP的内容还有很多,这里不再详细说明,但是需要知道,TCP连接的建立和释放还有几种比较特殊的情况,

同时打开(SYN)建立连接,同时关闭或半关闭来释放连接的情况都是存在的,还有一些TCP的可选字段,这里都不再讲了,具体可以参考:TCP/IP 详解卷1。