2019icpc南昌邀请赛B Polynomial (拉格朗日插值法)

时间:2021-11-22 17:25:18

题目链接:https://nanti.jisuanke.com/t/40254

题意:

2019icpc南昌邀请赛B Polynomial (拉格朗日插值法)

思路:

这题要用到拉格朗日插值法,网上查了一下,找到一份讲得特别好的:

2019icpc南昌邀请赛B Polynomial (拉格朗日插值法)

2019icpc南昌邀请赛B Polynomial (拉格朗日插值法)

2019icpc南昌邀请赛B Polynomial (拉格朗日插值法)

2019icpc南昌邀请赛B Polynomial (拉格朗日插值法)

2019icpc南昌邀请赛B Polynomial (拉格朗日插值法)

--------------------------------------------------------

以上关于拉格朗日插值法的理论转载自:https://blog.csdn.net/ftx456789/article/details/90750508

关于这道题的做法:
这题给了x从0~n的n+1种取值,那么可以用O(n)来插值,但是它所要求的是2019icpc南昌邀请赛B Polynomial (拉格朗日插值法)。能够想到要用前缀来预处理,我们令:

2019icpc南昌邀请赛B Polynomial (拉格朗日插值法),则答案为2019icpc南昌邀请赛B Polynomial (拉格朗日插值法)

直接预处理S(x)肯定会T,我们再用一次拉格朗日插值法。

先知道一个常识:n次多项式的前缀和是 n+1 次的多项式,也就是说 S(x)S(x) 要通过 n+2 个点来求出,然而题目只给出了n+1 个点。我们利用前面的插值法求出f(n+1),这样就有了n+2个点。之后就可以对S(x) 进行插值了。总复杂度为O(T*m*n)

要注意的是要线性求逆元,如果用费马小定理会T。

AC代码:

#include<cstdio>
#include<algorithm>
using namespace std; typedef long long LL; const int maxn=;
const int MOD=; int T,n,m;
LL a[maxn],inv[MOD+],finv[maxn];
LL sum[maxn],ans; LL qpow(LL a,LL b){
LL res=;
while(b){
if(b&) res=res*a%MOD;
a=a*a%MOD;
b>>=;
}
return res;
} void init(){
inv[]=;
for(int i=;i<=MOD+;++i)
inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
finv[]=;
for(int i=;i<=;++i)
finv[i]=finv[i-]*inv[i]%MOD;
} LL cal(LL x,LL *a,LL up){
LL res=;
LL p=;
for(LL i=;i<=up;++i)
p=p*(x-i)%MOD;
for(LL i=;i<=up;++i){
int f=(up-i)&?-:;
res=(res+MOD+a[i]*f*p%MOD*inv[x-i]%MOD*finv[i]%MOD*finv[up-i]%MOD)%MOD;
}
return res;
} int main(){
init();
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i){
scanf("%lld",&a[i]);
a[i]%=MOD;
}
a[n+]=cal(n+,a,n);
sum[]=a[];
for(int i=;i<=n+;++i)
sum[i]=(sum[i-]+a[i])%MOD;
while(m--){
int l,r;
scanf("%d%d",&l,&r);
if(r<=n+){
printf("%lld\n",(sum[r]-sum[l-]+MOD)%MOD);
continue;
}
if(l-<=n+)
ans=(cal(r,sum,n+)-sum[l-]+MOD)%MOD;
else
ans=(cal(r,sum,n+)-cal(l-,sum,n+)+MOD)%MOD;
printf("%lld\n",ans);
}
}
return ;
}