文件名称:论文研究-一种基于阈值选择策略的改进混合蛙跳算法.pdf
文件大小:562KB
文件格式:PDF
更新时间:2022-09-30 23:00:54
论文研究
混合蛙跳算法(SFLA)是一种全新的后启发式群体进化算法,具有高效的计算性能和优良的全局搜索能力。对混合蛙跳算法的基本原理进行了阐述,针对算法局部更新策略引起的更新操作前后个体空间位置变化较大,降低收敛速度这一问题,提出一种基于阈值选择策略的改进混合蛙跳算法。通过不满足阈值条件的个体分量不予更新的策略,减小了个体空间差异,从而改善了算法性能。数值实验证明了该改进算法的有效性,并对改进算法的阈值参数进行了率定。