论文研究-基于特征子空间邻域的局部保持流形学习算法.pdf

时间:2022-08-11 16:51:17
【文件属性】:

文件名称:论文研究-基于特征子空间邻域的局部保持流形学习算法.pdf

文件大小:1.14MB

文件格式:PDF

更新时间:2022-08-11 16:51:17

正约束,特征子空间,局部保持,流形学习

局部保持流形学习算法通过保持局部邻域特性来挖掘隐藏在高维数据中的内在流形结构。然而,对于缺乏足够训练样本的高维数据集,或者高维数据集存在非线性结构和高维数据特征中存在冗余、干扰特征,使得在原特征空间中利用欧式距离定义的邻域关系并不能真实反映数据的内在流形结构,从而影响算法的性能。提出利用正约束寻找特征子空间的方法,使得在此子空间中更多的同类样本紧聚,并进一步在该子空间中构建邻域关系来挖掘高维数据的内在流形,形成基于特征子空间邻域特性的局部保持流形学习算法(NFS-LPP和NFS-NPE)。它们在一定程度上克服了高维小样本数据集难以正确挖掘内在流形结构的问题,在Yale和ORL人脸库上的分类和聚类实验验证了其有效性。


网友评论