文件名称:论文研究-基于个体邻域的改进NSGA-II算法.pdf
文件大小:1.06MB
文件格式:PDF
更新时间:2022-10-06 05:08:44
论文研究
带有精英策略的非支配排序遗传算法(NSGA-II)是在NSGA的基础之上,提出拥挤度和拥挤度比较算子,代替了需要指定共享半径的适应度共享策略,是解决多目标优化问题的经典算法之一。但是NSGA-II算法在保持种群多样性时采取的拥挤距离排挤机制有着pareto前沿分布不均匀的缺陷,因此,提出一种基于个体邻域的改进NSGA-II算法SN-NSGA2。SN-NSGA2将密度聚类算法DBSCAN中邻域的思想应用到排挤机制中去,提出一种个体邻域的构建方法,采用相应的淘汰策略去除个体邻域中的其他邻居个体。实验结果表明相对于NSGA-II算法来说,新算法求出的pareto解集有着更好的分布性以及良好的收敛性。