文件名称:论文研究-基于人工免疫系统的多目标函数优化.pdf
文件大小:581KB
文件格式:PDF
更新时间:2022-10-01 06:37:05
论文研究
为克服传统遗传算法退化和早熟等缺点,同时降低优化算法的复杂度,提出基于人工免疫系统(Artificial Immune System, AIS)实现无约束多目标函数的优化。使用随机权重法和自适应权重法计算种群个体的适应值,使Pareto最优解均匀分布的同时,加快算法的收敛;通过引入人工免疫系统的三个基本算子:克隆、超变异和消亡,保持种群的多样性;在进化种群外设立Pareto 解集,保存历代的近似最优解。使用了两个典型的多目标检测函数验证了该算法的有效性。优化结果表明,基于AIS的多目标优化算法可使进化种群迅速收敛到Pareto前沿,并能均匀分布,是实现多目标函数优化的有效方法。