文件名称:sklearn-feature-engineering:使用sklearn做特征工程
文件大小:8KB
文件格式:ZIP
更新时间:2024-05-20 07:13:26
sklearn kaggle feature-engineering Python
sklearn-feature-engineering 前言 博主最近参加了几个kaggle比赛,发现做特征工程是其中很重要的一部分,而sklearn是做特征工程(做模型调算法)最常用也是最好用的工具没有之一,因此将自己的一些经验做一个总结分享给大家,希望对大家有所帮助。大家也可以到我的博客上看 有这么一句话在业界广泛流传,数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。 特征工程主要分为三部分: 数据预处理 对应的sklearn包: 特征选择 对应的sklearn包: 降维 对应的sklearn包: 本文中使用sklearn中的IRIS(鸢尾花)数据集来对特征处理功能进行说明,首先导入IRIS数据集的代码如下: 1 from sklearn.datasets
【文件预览】:
sklearn-feature-engineering-master
----README.md(15KB)
----feature_engineering.py(4KB)