文件名称:论文研究-基于实值遗传算法与TAFSVM的遥感图像分类.pdf
文件大小:691KB
文件格式:PDF
更新时间:2022-09-30 15:32:13
论文研究
支持向量机已经被成功应用于遥感图像分类。一种新型具有良好特性的支持向量机--全间隔自适应模糊支持向量机被提出。这种新型的支持向量机具有通过训练集的模糊性来增强泛化能力;对不平衡训练集具有自适应性,对正负数据采用不同的损失算法,可以提高正确分类率;通过引进全间隔算法来代替软间隔算法,可以得到更低的泛化误差等优良特性,符合遥感图像数据的内在规律。并且运用实值遗传算法对其进行参数优选,得到一种新的分类器——AGATAFSVM。最后将该分类器应用于遥感图像分类。实验结果表明,该分类器非常适用于遥感图像分类,分类精度和稳定性明显高于径向基神经网络分类器、 最近邻分类器和标准支持向量机。