文件名称:论文研究-融合DCT和LBP特征的表情识别.pdf
文件大小:550KB
文件格式:PDF
更新时间:2022-10-01 21:25:00
论文研究
为了获得更好的面部表情特征,提出了一种融合离散余弦变换(Discrete Cosine Transform,DCT)特征和局部二值模式(Local Binary Pattern,LBP)特征的表情特征提取方法。该方法将人脸图像经过DCT后所获得的低频系数作为表情的整体特征;通过对人脸图像进行分块,计算每个子块的LBP直方图,将这些LBP直方图连接起来形成LBP特征,对该LBP特征使用拉普拉斯特征映射(Laplacian Eigenmaps,LE)降维后得到表情的局部特征。将得到的整体特征和局部特征进行加权融合,使用最近邻分类器进行分类。在JAFFE和Cohn-Kanade表情库上的实验结果表明,该方法比单独使用LBP或者DCT特征,具有更好的效果。