文件名称:我们还需要前馈神经网络技术 (2013年)
文件大小:1.15MB
文件格式:PDF
更新时间:2024-07-01 16:02:15
自然科学 论文
定义了前馈核神经网络的体系结构。从实际应用的需求出发,所定义的网络涵盖了目前多数前馈神经网络。从理论上证明了该网络的批量学习过程实际上所表达的是一种核学习机,进而证明了网络的学习仅需在最后一层实施即可,而在隐含层的参数可任意赋值。因此,该结论事实上是现有LLM及ELM的拓广。同时,发现在逼近精度要求不是太高的情况下,目前的前馈神经网络学习技术因过于繁琐而没有必要,仅需对网络最后一层进行学习即可。而前馈神经网络技术目前最前沿的应用是解决大样本及深度知识表达问题。针对这两个热点问题,分别提出了大样本下的康价学