背包问题的求解,有二道题

时间:2014-07-29 08:59:48
【文件属性】:

文件名称:背包问题的求解,有二道题

文件大小:4KB

文件格式:RAR

更新时间:2014-07-29 08:59:48

c++ 课程设计 背包问题

问题描述: 假设有一个能装入总体积为T的背包和n件体积分别为w1 , w2 , … , wn 的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1 +w2 + … + wn=T,要求找出所有满足上述条件的解。例如:当T=10,各件物品的体积{1,8,4,3,5,2}时,可找到下列4组解: (1,4,3,2) (1,4,5) (8,2) (3,5,2)。 问题提示: 可利用回溯法的设计思想来解决背包问题。首先将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i 件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品"太大"不能装入,则弃之而继续选取下一件,直至背包装满为止。但如果在剩余的物品中找不到合适的物品以填满背包,则说明"刚刚"装入背包的那件物品"不合适",应将它取出"弃之一边",继续再从"它之后"的物品中选取,如此重复,直至求得满足条件的解,或者无解。 题目之二: 问题描述: 假设有n件物品,这些物品的重量分别是W1 , W2 , … , Wn,物品的价值分别是V1,V2, …,Vn。求从这n件物品中选取一部分物品的方案,使得所选中的物品的总重量不超过限定的重量W(W<∑Wi, i=1,2,┅,n),但所选中的物品价值之和为最大。 问题提示: 利用递归寻找物品的选择方案。假设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[]中,该方案的总价值保存于变量max_value中。当前正在考察新方案,其物品选择情况保存于数组eop[]中。假设当前方案已考虑了i-1件物品,现在要考虑第i件物品:当前方案已包含的物品的重量之和为tw;因此,若其余物品都选择是可能的话,本方案所能达到的总价值的期望值设为tv。引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值max_value时,继续考察当前方案已无意义,应终止当前方案而去考察下一个方案。 第i件物品的选择有两种可能: ① 物品i被选择。这种可能性仅当包含它不会超过方案总重量的限制才是可行的。选中之后继续递归去考虑其余物品的选择; ② 物品i不被选择。这种可能性仅当不包含物品i也有可能找到价值更大的方案的情况。


【文件预览】:
数组.cpp
a.cpp
a55.cpp
Cpp1.cpp
a5.cpp

网友评论

  • 一般般,没有用到啊