组合核支持向量机高光谱图像分类

时间:2024-06-01 05:44:59
【文件属性】:

文件名称:组合核支持向量机高光谱图像分类

文件大小:1.62MB

文件格式:PDF

更新时间:2024-06-01 05:44:59

高光谱图像分类;支持向量机;空间邻域;组合核

为了提高高光谱遥感图像分类中空间信息的利用率,提出一种将空间邻域信息和光谱信息结合的组合核支持向量机(SVM)学习算法.用SVM进行预分类,从分类结果图提取各像素的空间邻域特征,与光谱特征结合构造组合核SVM进行分类,并再次提取空间邻域特征进行多次空-谱信息组合核SVM迭代分类,如此迭代10次,从中选择合适的结果作为最终输出.结果表明,该方法对传统支持向量机的分类精度提升幅度可达10%左右.同时,与其他组合核支持向量机相比,该算法用更少的训练样本获得了更高分类精度.


网友评论