文件名称:Python数据处理课程设计-房屋价格预测
文件大小:1.67MB
文件格式:DOCX
更新时间:2022-06-14 20:17:38
数据处理 python 房屋价格预测
.研究意义 目前有人在对房屋价格的研究上已经取得了诸多成果,大多数人主要从政治、经济、政策、人口等宏观层面对房屋价格进行了分析,也有少数学者从房屋建筑硬件设施等微观因素展开了研究,也取得了较好的预测效果,但目前这方面还是相对较少。鉴于此,我将根据比赛的数据,构建特征变量集,选取有代表性的特征变量,在已有数据的基础上,对数据进行处理,使用机器学习算法分析房价问题,选择预测模型将其用于预测测试集的房屋价格。 此外,无论是对于监管者还是消费者,是房产中介机构还是房地产开发商,只有深入了解房地产交易市场,才能进行合理监管与规划;高效率推广房源,在能满足购房者需求的前提下科学定价,提高市场竞争优势;有效规避风险,降低不必要的损失等。所以预测房屋价格能为人们在住房购买方面提供更多选择,具有一定的参考作用。 3.题目描述 购房者描述了他们梦想中的房子,他们可能不会从地下室天花板的高度或东西向铁路的距离开始。但这些数据证明,影响价格谈判的因素远大于卧室数量或白色栅栏。题目给出的变量几乎描述了爱荷华州艾姆斯市住宅的各个方面。根据题目所给出的训练集和测试集的数据,分析题目所给的80个变量,预测出测试集中