文件名称:在 jupter notebook中 构建多层感知器 识别 MNIST 手写字体
文件大小:120KB
文件格式:IPYNB
更新时间:2022-07-19 21:12:22
MNIST数据集 多层感知器 keras Anaconda python
文件:python代码 内容:基于 anaconda+keras 框架,在 jupter notebook 中 构建多层感知器,识别MNIST数据集中的手写数字。 亲测可用,同学们可以放心下载。 MNIST数据集 (Mixed National Institute of Standards and Technology database) 是美国国家标准与技术研究院收集整理的大型**手写数字数据库**,包含 6万 个示例的训练集以及 1万 个示例的测试集。MNIST数字文字识别数据集数据量不太多,而且是单色的图像,比较简单,很适合深度学习的初学者用来练习建立模型、训练、预测。 经典的MNIST数据集包含了大量的手写数字。十几年来,来自机器学习、机器视觉、人工智能、深度学习领域的研究员们把这个数据集作为衡量算法的基准之一。你会在很多的会议,期刊的论文中发现这个数据集的身影。实际上,MNIST数据集已经成为算法作者的必测的数据集之一。有人曾调侃道:"如果一个算法在MNIST不work, 那么它就根本没法用;而如果它在MNIST上work, 它在其他数据上也可能不work!"