文件名称:水电机组振动故障的粗糙集-神经网络诊断方法 (2007年)
文件大小:387KB
文件格式:PDF
更新时间:2024-07-06 00:58:59
自然科学 论文
针对当前水电机组故障原因复杂,实际监测数据量大,采用神经网络方法进行机组故障诊断存在网络结构复杂、训练时间长、诊断困难的问题,文章将粗糙集理论引入到水电机组故障诊断中,提出了基于粗糙集理论与RBF神经网络相结合的水电机组故障诊断方法。在保持分类能力不变的前提下,用粗糙集理论对故障信息进行约简处理,然后用RBF神经网络对预处理后的故障信息进行诊断,使神经网络的输入神经元数目明显减少,其结构得以简化。通过对某电站实测机组数据进行离线故障诊断,证明该诊断方法有效提高了机组故障诊断的效率和准确性。