面向神经机器翻译的集成学习方法分析

时间:2024-04-23 18:44:05
【文件属性】:

文件名称:面向神经机器翻译的集成学习方法分析

文件大小:2.25MB

文件格式:PDF

更新时间:2024-04-23 18:44:05

集成学习,参数平均,模型融合,多样性

集成学习是一种联合多个学习器进行协同决策的机器学习方法,应用在机器翻译任务的推断过程中可以有效整合多个模型预测的概率分布,达到提升翻译系统的准确性的目的。虽然该方法的有效性已在机器翻译评测中得到了广泛验证,但关于子模型的选择与融合的策略仍鲜有研究。该文主要针对机器翻译任务中的参数平均与模型融合两种集成学习方法进行了大量的实验,分别从模型与数据层面、多样性与模型数量层面对集成学习的策略进行了深入探索。实验结果表明在WMT中英新闻任务上,所提模型相比Transformer单模型有3. 19个BLEU值的提升。


网友评论