文件名称:极小四阶限制边连通图* (2010年)
文件大小:260KB
文件格式:PDF
更新时间:2024-07-06 02:30:36
自然科学 论文
设C是有限简单无向图,k是正整数.使G―S每个分支的阶不小于k的边割S称为C的k阶限制边割.C的四阶限制边连通度λ4(G)是G的四阶限制边割之中最少的边数.若对于任意边e∈E(G),均有λ4(G-e)=λ4(G)-1,则称G是极小四阶限制边连通图.定义ξ4(G)=min{e(U):U∈V(G),G[U]是四阶连通导出子图},此处e(U)表示恰好有一个点在U上的边的数目.若λ4(G)=ξ(G),则称G是λ4最优的.若每个5阶限制边割都孤立出G的一个5阶连通子图,则称G是超级5阶边连通的.笔者给出:极小四阶限