文件名称:基于维样本近邻区间的分类算法研究 (2012年)
文件大小:626KB
文件格式:PDF
更新时间:2024-05-31 16:32:49
自然科学 论文
针对传统KNN算法忽略样本分布对分类的影响,易受到孤立样本、噪音等干扰,时间代价大等问题,提出了一种改进的近邻分类算法.该算法首先采用类维样本存储,打破了样本的整体性,转换了训练样本存储模式;其次按类维度寻求未知样本的类维近邻域,计算类维相似度进而得到未知样本的类别相似度;最后以最大类别相似度标识未知样本.该算法提高了分类效率,降低了独立样本对样本分类的影响.同时可处理连续型和标识型样本分类,并可适应各类样本分布情况,扩大了算法的应用范围.实验结果表明,该算法较传统的近邻算法与邻域分类算法在分类精度与分类