文件名称:基于模糊SVM模型的入侵检测分类算法
文件大小:1.55MB
文件格式:PDF
更新时间:2024-05-20 07:13:02
模糊 SVM 入侵检测
为解决入侵检测分类遇到的训练样本数量少、分类准确率低的问题,提出基于模糊支持向量机的多级分类机制。该分类机制训练模糊SVM模型将数据粗分为正常与攻击大类,采用DBSCAN算法产生细分模型进行攻击子集的自动聚类,将有关数据细分得到攻击的具体细类。在机制设计中,优化了隶属度函数的计算、设计了数据标准化与归一化等过程,并训练了高效分类器。实验表明,针对网络入侵检测数据中常见的孤立点干扰、噪声多,并且负样本占比多的网络业务数据集,新算法在保持分类准确率高的前提下,分类过程的计算时间较短。