文件名称:基于多智能体强化学习的新强化函数设计 (2009年)
文件大小:339KB
文件格式:PDF
更新时间:2024-06-05 02:38:11
工程技术 论文
为了提高强化学习算法在多智能体系统中的性能表现,针对典型的多智能体系统-Keepaway平台总是以失败告终的特点,受与之有相同特点的单智能体系统杆平衡系统所采用强化函数的启发,重新设计一种新的惩罚式的强化函数。新的强化函数在系统成功状态时设零值奖赏,失败状态时给与负值惩罚。基于新设计的强化函数的Sarsa(λ)算法成功应用在 Keepaway平台上。仿真结果表明,新设计的强化函数在一定参数条件下有效提高了强化学习算法载Keepaway平台的性能表现,其最终的学习效果更好。