基于Spark的多标签超网络集成学习

时间:2021-07-12 08:58:03
【文件属性】:

文件名称:基于Spark的多标签超网络集成学习

文件大小:2.78MB

文件格式:PDF

更新时间:2021-07-12 08:58:03

大数据

近年来,多标签学习在图像识别和文本分类等多个领域得到了广泛关注,具有越来越重要的潜在应用价值。尽管多标签学习的发展日新月异,但仍然存在两个主要挑战,即如何利用标签间的相关性以及如何处理大规模的多标签数据。针对上述问题,基于MLHN算法,提出一种能有效利用标签相关性且能处理大数据集的基于Spark的多标签超网络集成算法SEI-MLHN。该算法首先引入代价敏感,使其适应不平衡数据集。其次,改良了超网络演化学习过程,并优化了损失函数,降低了算法时间复杂度。最后,进行了选择性集成,使其适应大规模数据集。在11个不同规模的数据集上进行实验,结果表明,该算法具有较好的分类性能,较低的时间复杂度且具备良好的处理大规模数据集的能力。


网友评论