文件名称:基于多特征参量的回转支承智能健康状态评估 (2014年)
文件大小:384KB
文件格式:PDF
更新时间:2024-06-03 16:45:50
自然科学 论文
为了提高回转支承运行可靠性,及时发现其潜在的失效,实施良好的设备维护与管理,有必要对其进行健康状态评估。选取表征回转支承健康状态的温度和扭矩作为特征参量,建立了一种采用遗传算法优化动态递归 Elman神经网络的回转支承多参量健康状态评估模型,并利用3 MW变桨回转支承疲劳寿命实验数据对该模型进行了网络训练和测试。结果表明,该模型评估结果与实验值相符,可准确地对回转支承进行健康状态评估。