文件名称:基于层次的最大频繁项集挖掘算法
文件大小:793KB
文件格式:PDF
更新时间:2024-05-06 11:49:27
数据挖掘;关联规则;最大频繁项集
关联规则的研究是数据挖掘中的重要问题,如何高效地发现频繁项集是关联规则研究中的关键问题。根据数据库事务的统计性规律,在最大频繁项集发现算法Apriori及其变种算法的基础上,提出一种新的基于层次的最大频繁项集的发现算法。首先从整体上判断候选集的频繁性,然后在发现最大频繁项集的过程中,通过引入整体性策略、排序策略、最小策略有效地减少了候选集与数据库事务之间的比较次数。实验结果表明,采用该算法处理数据库事务数量大的最大频繁项集的发现任务,其效率相比Apriori算法有显著的提高。