Introduction.to.Machine.Learning.3rd.Edition

时间:2018-03-01 04:07:52
【文件属性】:

文件名称:Introduction.to.Machine.Learning.3rd.Edition

文件大小:7.4MB

文件格式:PDF

更新时间:2018-03-01 04:07:52

Machine Learning

Title: Introduction to Machine Learning, 3rd Edition Author: Ethem Alpaydin Length: 640 pages Edition: 3rd Language: English Publisher: The MIT Press Publication Date: 2014-08-22 ISBN-10: 0262028182 ISBN-13: 9780262028189 The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing. Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods. Table of Contents Chapter 1 Introduction Chapter 2 Supervised Learning Chapter 3 Bayesian Decision Theory Chapter 4 Parametric Methods Chapter 5 Multivariate Methods Chapter 6 Dimensionality Reduction Chapter 7 Clustering Chapter 8 Nonparametric Methods Chapter 9 Decision Trees Chapter 10 Linear Discrimination Chapter 11 Multilayer Perceptrons Chapter 12 Local Models Chapter 13 Kernel Machines Chapter 14 Graphical Models Chapter 15 Hidden Markov Models Chapter 16 Bayesian Estimation Chapter 17 Combining Multiple Learners Chapter 18 Reinforcement Learning Chapter 19 Design and Analysis of Machine Learning Experiments


网友评论

  • 谢谢了,资源不错。
  • 还没有来得及看
  • 好书,虽然还没看完。
  • 还不错,就是有缺页~
  • 凑合看吧。擦。
  • 谢谢了,资源不错。
  • 非常不错,但是还是需要结合中文看
  • 英文版本不错
  • 内容很全,感谢分享,需要下功夫学习。
  • 还不错,先让我看看,谢谢分享
  • orilley推荐的好书
  • 高人推荐的好书
  • 相当不错的资料书,比较科普
  • 新的版本,第三版,还是很经典。
  • 谢谢,如果少一点积分扣除更好啦
  • 真心不错哦,可以看看
  • 多谢楼主,一定好好学习这份资料
  • 确实有缺页和跳页,美中不足吧!
  • 感谢,好不容易才找到的真不错
  • 有缺页和跳页,有点遗憾,谢谢分享。
  • 好书,先下载。有空再看。
  • 很好的书!
  • 这本书确实有 bug,不建议下载
  • 机器学习方面的好书很多,这本就是其中非常不错的教科书,值得收藏,作为参考书很不错。
  • 原版,清晰,推荐,和中文版配合使用更佳
  • 非常棒的一本书,学习了!
  • 感谢, 是原文正版, 而且非扫描版!
  • 不错,谢谢分享!
  • 原书正版,科学没有标签
  • 有缺页和跳页,如第9页缺,目录跳页。 有全的版本就好了。 Thanks anyway。