论文研究-一种基于累积适应度遗传算法的SVM多分类决策树.pdf

时间:2022-08-11 13:24:18
【文件属性】:

文件名称:论文研究-一种基于累积适应度遗传算法的SVM多分类决策树.pdf

文件大小:1006KB

文件格式:PDF

更新时间:2022-08-11 13:24:18

多分类,支持向量机,遗传算法,累积适应度函数,全局优化

针对基于遗传算法(genetic algorithm,GA)的支持向量机(support vector machine,SVM)多分类决策树算法(GA-SVM)中全局优化缺陷的问题,通过重新定义遗传适应度函数(fitness),提出一种累积适应度(cumulative fitness),进而衍生出新算法CFGA-SVM。该算法从根节点开始逐层构造二叉树,对根节点基因实值编码,通过基因分裂操作产生子代种群,然后利用累积适应度筛选出新的种群,筛选出的种群并不一定是当代局部最优,但一定是所得二叉树中全局最优,从而提高分类精度,最后以此循环直至算法结束。通过在UCI的artificial characters数据集上的实验结果表明,CFGA-SVM较之DT-SVM与GA-SVM算法在全局优化能力、分类精度上有明显提高,进而验证了该算法的可行性与有效性,可在大规模样本的分类应用中推广。


网友评论