BP多层感知器 源代码 神经网络

时间:2012-07-03 09:53:34
【文件属性】:

文件名称:BP多层感知器 源代码 神经网络

文件大小:28KB

文件格式:RAR

更新时间:2012-07-03 09:53:34

BP多层感知器 源代码 神经网络

BP多层感知器 源代码 神经网络 tic; %计时开始 clc; %清屏 clear all; %清除所有变量 disp('输入层神经元个数: 16'); %显示输入层神经元个数 input=16; disp('中间层神经元个数: 8'); %显示中间层神经元个数 middle=8; disp('输出层神经元个数: 3'); %显示输出层神经元个数 output=3; disp('输入模式1 2 3及其对应的输出:'); x1=[1;1;1;1;1;0;0;1;1;1;1;1;1;0;0;1]; %x1(16,1) y1=[1;0;0]; %y1(3,1) x2=[0;1;0;0;0;1;0;0;0;1;0;0;0;1;0;0]; %x2(16,1) y2=[0;1;0]; %y2(3,1) x3=[1;1;1;1;1;0;0;1;1;0;0;1;1;1;1;1]; %x3(16,1) y3=[0;0;1]; %y3(3,1) disp('形成一张供调用的样本向量表:'); disp('X_sample向量表:x1,x2,x3'); X_sample=[x1,x2,x3] %x1,x2,x3向量表>>>X(16,3) disp('X_sample向量表:y1,y2,y3'); Y_sample=[y1,y2,y3] %y1,y2,y3向量表>>>Yo(3,3) disp('初始化连接权矩阵:'); disp('显示初始化连接权矩阵v(16,8):v(i,j):v(input,middle):'); v=rands(input,middle); %初始化连接权矩阵v(i,j) :输入层与中间层的连接权>>>v(16,8) disp(v); %显示初始化连接权矩阵v(i,j) disp('显示初始化连接权矩阵w(8,3):w(j,k):w(middle,output):'); w=rands(middle,output); %初始化连接权矩阵w(j,t) :中间层与输出层的连接权>>>w(8,3) disp(w); %显示初始化连接权矩阵w(j,t) disp('初始化阈值矩阵:'); disp('中间层阈值矩阵th1(8,1):th1(j,1):th1(middle,1):'); th1=rands(middle,1); %初始化中间层阈值矩阵th1 :中间层的阈值>>>th1(8,1) disp(th1); %显示中间层阈值矩阵th1 disp('输出层阈值矩阵th2(3,1):th2(k,1):th2


【文件预览】:
【徐新龙】BP多层感知器
----10 源程序 BP【最终版本的BP神经网络程序】.doc(36KB)
----3 加入动量调节项后的BP神经网络程序.txt(4KB)
----动量 BP 输出.txt(4KB)
----1 提出一个问题.doc(20KB)
----前后时间对比.xls(17KB)
----BP流程图.doc(40KB)
----BP 输出.txt(4KB)
----2 BP神经网络程序.txt(4KB)

网友评论

  • 运行学习了,难得找到的多层神经网络代码!对照着机器学习的书,整个算法的流程一目了然!