文件名称:论文研究-基于PCNN和遗传算法相结合的新型混凝土桥梁裂缝检测方法.pdf
文件大小:705KB
文件格式:PDF
更新时间:2022-08-11 15:14:37
混凝土桥梁裂缝检测,脉冲耦合神经网络,遗传算法,最小对数误差
针对混凝土桥梁裂缝对比度低、裂缝图像噪声干扰强等难题,提出了基于脉冲耦合神经网络(PCNN)和遗传算法相结合的混凝土桥梁裂缝检测新算法(GA-PCNN)。该算法首先利用遗传算法优化裂缝PCNN模型参数;然后通过改进的最小对数误差适应度函数区分裂缝与背景,当适应度值大小几乎无变化时,停止分割图像;最后通过连通域去噪算法滤除残余噪声,实现裂缝的自动检测。比较GA-PCNN、PCNN和基于熵及动态阈值算法对裂缝图像的分割效果,并绘制PR和ROC曲线评价分割质量,经计算GA-PCNN算法的PR和ROC曲线下面积为90.6%和91.6%,分别高于PCNN算法10.1%和6.8%、基于熵和动态阈值6.5%和6.7%。实验结果表明,GA-PCNN新算法分割效果好且去噪能力强,该算法能准确地提取混凝土桥梁裂缝特征。