文件名称:jcmDNAtools:基于pythonpandas的实用程序,用于分析高通量DNA测序数据
文件大小:14.68MB
文件格式:ZIP
更新时间:2024-03-13 01:15:18
Python
DNA分类器 我将NLP分类器代码与生物信息学代码结合在一起,以识别参考基因组中重复出现的DNA图案,并训练神经网络在两个样本之间进行分类。 1.learnMotifs.py研究了两个参考基因组并确定了指定长度的前100个重复基序 2.tokenizeFastQ.py适用于fastA或fastQ原始数据格式,并使用1中的主题对其进行标记化 3.trainDNAclassifier.py接受来自2的标记化数据,并训练神经网络在两者之间进行分类。 这提供了程序上可扩展的数据管道,可以直接从Illumina机器自动识别微生物样品。 表现: 在该过程的最后,脚本在第一次尝试时产生了100%准确度的网络预测。 不过,这是在截短的样本上进行的,总共只进行了50次,以节省时间。因此,这里可能会过度拟合。 产生的神经网络ecoli.paerug.h5将大肠杆菌与铜绿假单胞菌的原始样品区分开来。 特征
【文件预览】:
jcmDNAtools-master
----paerugmotifs1020.csv(3KB)
----0B.countingmotifs.png(1.08MB)
----1.making_motifs.png(1.24MB)
----0D.trainingClassifier.png(1.27MB)
----0C.tokenizingDNA.png(1.06MB)
----2.tokenizeFastQ.py(4KB)
----3.trainDNAClassifier.py(5KB)
----0A.making_motifs.png(1.24MB)
----ecoli.paerug.h5(9.73MB)
----README.md(5KB)
----3.tokenizingDNA.png(1.06MB)
----ecoli.paerug.25k.csv(28KB)
----2.countingmotifs.png(1.08MB)
----1.learnMotifs.py(3KB)
----ecolimotifs1020.csv(3KB)