多目标优化在特征选择子集评价中的应用

时间:2024-05-20 08:18:37
【文件属性】:

文件名称:多目标优化在特征选择子集评价中的应用

文件大小:1.86MB

文件格式:PDF

更新时间:2024-05-20 08:18:37

特征选择 多目标优化 粒子群优化

特征选择是处理高维大数据常用的降维手段,但其中牵涉到的多个彼此冲突的特征子集评价目标难以平衡。为综合考虑特征选择中多种子集评价方式间的折中,优化子集性能,提出一种基于子集评价多目标优化的特征选择框架,并重点对多目标粒子群优化(MOPSO)在特征子集评价中的应用进行了研究。该框架分别根据子集的稀疏度、分类能力和信息损失度设计多目标优化函数,继而基于多目标优化算法进行特征权值向量寻优,并通过权值向量Pareto解集膝点选取确定最优向量,最终实现基于权值向量排序的特征选择。设计实验对比了基于多目标粒子群优化算法的特征选择(FS_MOPSO)与四种经典方法的性能,多个数据集上的结果表明,FS_MOPSO在低维空间表现出更高的分类精度,并保证了更少的信息损失。


网友评论