文件名称:神经网络模型在港口吞吐量预测中的应用与误差分析 (2008年)
文件大小:1.39MB
文件格式:PDF
更新时间:2024-06-04 13:23:05
工程技术 论文
应用神经网络BP算法对杭州港的吞吐量预测实例进行了详细分析。通过对网络各种参数的调试与组合得出,当隐含层节点数为15,训练控制误差为0.035,分级迭代级数为4级,平滑因子参数为0.2,学习速率参数为1.5时,网络性能最佳。将网络预测结果与时问序列和回归分析2种方法进行了比较,得出神经网络方法在短期预测中要优于传统方法。通过对模型预测误差产生原因的简要分析,得出神经网络方法并不适用于吞吐量长期预测。最后对其应用过程中可能存在的一些问题提出了建议。