文件名称:改进的非线性PCA方法及其在过程监控中的应用 (2008年)
文件大小:285KB
文件格式:PDF
更新时间:2024-06-17 15:57:17
工程技术 论文
针对化工聚合反应过程的特点,结合小波分解多分辨率特性和独立元分析(ICA)提取个数较少的相互独立信号的优点,改进了基于自相关神经元网络的非线性主元分析(NLPCA)方法。在传统的非线性PCA方法中引入了独立元分析模块,不仅解决了自相关神经元网络中确定各层神经元个数的问题,而且以最少的独立元个数捕捉数据的非线性特征。多尺度监控可以识别各种幅值的故障,提高了监控效果。在此基础上,计算I2、Ie2和SPE统计量用于故障检测。贡献图法用于识别故障变量。在聚酯生产过程上的仿真结果表明,改进后的方法比传统的非线性PC