文件名称:基于C3D的足球视频场景分类算法
文件大小:1.26MB
文件格式:PDF
更新时间:2024-05-26 06:15:04
三维卷积 足球 镜头检测 语义标注 场景分类
足球视频整场比赛持续时间较长,许多视频内容并非广大观众的兴趣所在,因此足球视频场景分类成为了近几十年来研究界的一项重要课题,许多机器学习方法也被应用于这个课题上.本文提出的基于C3D (三维卷积神经网络)的足球视频场景分类算法,将三维卷积运用于足球视频领域,并通过实验验证了本文算法的可行性.本文实验的流程如下:首先,基于帧间差分法和徽标检测法检测法对足球视频场景切换进行检测,实现镜头分割.在此基础上,提取分割镜头的语义特征并将其进行标记,然后通过C3D对足球事件进行分类.本文将足球视频分为7类,分别为远镜头、中镜头、特写镜头、回放镜头、观众镜头、开场镜头及VAR (视频助理裁判)镜头.实验结果表明,该模型在足球视频数据集上的分类准确率为96%.