文件名称:基于鲁棒主元分析的故障诊断方法 (2008年)
文件大小:332KB
文件格式:PDF
更新时间:2024-05-16 00:07:05
自然科学 论文
针对工业过程的建模数据中含有离群点的情况,提出了一种基于鲁棒主元分析(PCA)的故障诊断方法。该方法使用广义极大似然估计(M估计)代替最小二乘估计,将传统的主元分析问题转化为一个加权的重构误差优化问题,然后通过改进的非线性迭代部分最小二乘(NIPALS)算法来求得问题的最优解,在此基础上建立主元模型并构造监控统计量检测过程故障。在连续搅拌反应器(CSTR)仿真系统上的应用结果表明,鲁棒PCA方法能够消除离群点对主元模型的影响,比PCA方法分析过程数据更为准确,能更有效地诊断过程故障。