文件名称:面向大数据复杂应用的GPU协同计算模型
文件大小:979KB
文件格式:PDF
更新时间:2024-05-20 08:09:31
协同计算模型 计算模式 大数据处理
大数据计算中存在流计算、内存计算、批计算和图计算等不同模式,各种计算模式有不同的访存、通信和资源利用等特征。GPU异构集群在大数据分析处理中得到广泛应用,然而缺少研究GPU异构集群在大数据分析中的计算模型。多核CPU与GPU协同计算时不仅增加了计算资源的密度,而且提高节点间和节点内的通信复杂度。为了从理论上研究GPU与多核CPU协同计算问题,面向多种计算模式建立一个多阶段的协同计算模型(p-DCOT)。p-DCOT以BSP大同步并行模型为核心,将协同计算过程分成数据层、计算层和通信层三个层次,并且延用DOT模型的矩阵来形式化描述计算和通信行为。通过扩展p-DOT模型描述节点内和节点间的协同计算行为,细化了负载均衡的参数并证明时间成本函数,最后用典型计算作业验证模型及参数分析的有效性。该协同计算模型可成为揭示大数据分析处理中协同计算行为的工具。