文件名称:基于支持向量机的铁谱磨粒模式识别 (2006年)
文件大小:2.65MB
文件格式:PDF
更新时间:2024-06-05 09:03:34
工程技术 论文
将支持向量机方法用于铁谱磨粒模式识别,以磨粒样本的圆形度、细长度、散射度和凹度4个形态特征量作为支持向量机分类器的输入,以滑动磨损、切削磨损、正常磨损和疲劳点蚀4种磨损形式作为分类器的输出,建立基于支持向量机的磨粒分类器;研究支持向量机中误差惩罚系数和核参数对磨粒分类器的性能影响;通过实验比较了基于支持向量机与基于BP神经网络的磨粒分类器的性能,结果表明,基于支持向量机的磨粒分类器分类准确率为96%,基于BP神经网络的磨粒分类器分类准确率为90%。