文件名称:论文研究-数据流上快速子序列匹配.pdf
文件大小:975KB
文件格式:PDF
更新时间:2022-10-01 07:38:08
论文研究
数据流技术目前已广泛应用于金融分析、网络监控及传感器网络等诸多领域,而已有的相似性匹配技术主要针对时间序列数据库,难于直接应用于高速、连续、实时、海量的流数据,因此在数据流上渐进、实时地进行子序列匹配成为一个极具价值和挑战性的问题。在动态时间规整技术的基础上,设计了一种新颖的界限机制,充分利用相似性阈值,尽量减少冗余计算,算法完全符合数据流“单遍扫描”的性能要求,并通过大量的模拟和真实数据实验表明:与现有的SPRING算法相比,在不损失任何算法精度的前提下,仅增加几个字节的空间开销,速度至少提高3倍。